MATHÉMATIQUES II

Notations : on désigne par K le corps des nombres réels IR ou des complexes $\mathbb C$. Lorsque $K=\mathbb C$ et $z\in K$, |z| est le module de z et $i^2=-1$. Pour les entiers n et $p\geq 1$, on note :

- K^n le K-espace vectoriel des vecteurs $(z_1, z_2, ..., z_n)$ avec $z_j \in K$ pour j = 1, 2, ...n.
- $M_{n,p}(K)$ les matrices à n lignes et p colonnes à coefficients dans K; et $M_n(K) = M_{n,p}(K)$.

On identifie K^n et $M_{n,\;1}(K)$ donc, en calcul matriciel un vecteur s'identifie avec la matrice colonne ayant les mêmes éléments. Pour $A\in M_{n,\;p}(K)$, on note $A=(a_{ij})_{1\leq i\leq n,\;1\leq j\leq p}$ lorsqu'on veut préciser les éléments de A; quand le contexte est clair, on écrit simplement $A=(a_{ij})$ ou $A=(A_{ij})$. Pour $x\in K^n$, D_x est la matrice diagonale dont les éléments diagonaux sont ceux de x. Pour $A\in M_n(K)$, σ_A désigne le spectre de A, c'est-à-dire l'ensemble des valeurs propres de A et $\rho(A)=\max\{|\lambda|;\lambda\in\sigma_A\}$. Pour $A\in M_n(K)$, tA est la transposée de A; et pour $A\in M_n(\mathbb{C})$, $A^*=^t\overline{A}$ (c'est-à-dire $A^*_{ij}=\overline{a}_{ji}$). $S_n(K)$ désigne le sousensemble des matrice symétriques de $M_n(K)$. Pour $K=\mathbb{R}$, $S_n^+(\mathbb{R})$ et $S_n^{++}(\mathbb{R})$ sont respectivement les sous-ensembles des matrices symétriques positives et définies positives de $S_n(\mathbb{R})$. On rappelle qu'une matrice symétrique A est positive (resp. définie positive) lorsque la forme quadratique qu'elle définit ne prend que des valeurs positives (resp. strictement positives) sur $\mathbb{R}^n \backslash \{0\}$.

Partie I -

I.A - Dans cette partie, on munit \mathbb{C}^n de la norme $(\| \|_{\infty})$ soit $\|z\|_{\infty} = \max_{j=1,\dots,n} |z_j|$.

On définit l'application $A \in M_n(\mathbb{C}) \to N_\infty(A) = \max_{i=1,\ldots,n} \sum_{j \in [1,2,\ldots,n]} |a_{ij}|$. I.A.1) Montrer que $A \to N_\infty(A)$ est une norme sur $M_n(\mathbb{C})$.

I.A.2)

a) Montrer que $\forall A \in M_n(\mathbb{C})$, $\forall z \in \mathbb{C}^n : ||A(z)||_{\infty} \le N_{\infty}(A)||z||_{\infty}$.

Filière MP

b) Montrer l'égalité

$$N_{\infty}(A) = \max_{z \in (\mathbb{C}^n \setminus \{0\})} \frac{\|A(z)\|_{\infty}}{\|z\|_{\infty}}.$$

- c) Montrer que $\rho(A) \leq N_{\infty}(A)$.
- I.A.3) Montrer que N_{∞} est une norme matricielle c'est-à-dire qu'elle vérifie : $\forall A \text{ et } B \in M_n(\mathbb{C}), \ N_{\infty}(AB) \leq N_{\infty}(A)N_{\infty}(B)$.
- I.A.4) Soit $Q \in M_n(\mathbb{C})$ une matrice inversible. On définit $A \in M_n(\mathbb{C}) \to N_Q(A) = N_\infty(Q^{-1}AQ) \ .$
- a) Vérifier que N_Q est une norme matricielle sur $M_n(\mathbb{C})$.
- b) Montrer qu'il existe une constante C_Q telle que

$$\forall A \in M_n(\mathbb{C}) \qquad \frac{1}{C_Q} N_\infty(A) \leq N_Q(A) \leq C_Q N_\infty(A) \,.$$

I.B -

Soit $T \in M_n(\mathbb{C})$ une matrice triangulaire supérieure et $\varepsilon > 0$ donné.

Montrer que l'on peut choisir une matrice diagonale $D_S\!\in\! M_n(\mathbb{C})$ avec

$$S=(s,s^2,s^3,...s^n)\in\mathbb{C}^n$$
 où s est un réel strictement positif telle que : $N_{D_S}(T)<\rho(T)+\varepsilon$.

Étant donnés $A\in M_n(\mathbb{C})$ et $\varepsilon>0$, montrer qu'il existe une norme matricielle N_ε telle que

$$N_{\varepsilon}(A) < \rho(A) + \varepsilon$$
.

I.C - En déduire l'équivalence $\lim_{k \to \infty} A^k = 0 \Leftrightarrow \rho(A) < 1$.

Partie II -

Soit
$$A \in M_n(\mathbb{C})$$
 fixée; pour $i \in [1, 2, ...n]$ on pose : $L_i = \sum_{j \in [1, 2, ...n]_{j \neq i}} |a_{ij}| C_i = \sum_{j \in [1, 2, ...n]_{j \neq i}} |a_{ji}|$.

On définit les sous-ensembles du plan complexe :

$$G_L(A) \,=\, \bigcup_{i\,=\,1}^n D_i(A) \text{ et } D_i(A) \,=\, \left\{z\in\mathbb{C}\,,\,\, \left|z-a_{ii}\right| \leq L_i\right\}.$$

$$G_{C}(A) = \bigcup_{i=1}^{n} D'_{i}(A) \text{ et } D'_{i}(A) = \{z \in \mathbb{C}, |z - a_{ii}| \le C_{i}\}.$$

On désigne par $C_i(A)$ le cercle bordant le disque $D_i(A)$.

II.A -

II.A.1) Soit

$$A = \begin{pmatrix} 4+3i & i & 2 & -1\\ i & -1+i & 0 & 0\\ 1+i & -i & 5+6i & 2i\\ 1 & -2i & 2i & -5-5i \end{pmatrix}.$$

Représenter dans le plan complexe $G_L(A)$ et $G_C(A)$.

II.A.2) On se propose de montrer l'inclusion $\sigma_A \subset G_L(A) \cap G_C(A)$.

a) Soit $M=(m)_{ij}\in M_n(\mathbb{C})$ telle que le système linéaire MZ=0 a une solution non nulle.

Montrer que

$$\exists p \in [1, 2, ...n] \qquad |m_{np}| \le L_p$$
.

- b) Soient $A\in M_n(\mathbb{C})$ et $\lambda\in\sigma_A$. Utiliser II.A.2-a) et montrer que $\lambda\in G_L(A)$.
- c) Conclure en justifiant l'inclusion $\sigma_A \subset G_C(A)$.

II.A.3) On suppose que $A \in M_n(\mathbb{C})$ a une valeur propre μ sur le bord de $G_L(A)^{(1)}$ et soit x un vecteur propre associé à μ .

- a) Montrer que si pour $k \in [1, 2, ...n]$ on a $|x_k| = ||x||_{\infty}$, alors $\mu \in C_k(A)$.
- b) On suppose de plus que $a_{ij} \neq 0 \, \forall (i,j)$. Montrer que $\mu \in \bigcap_{j=1}^n C_j(A)$.

^{1.} Un point z appartient au bord de $G_L(A)$ si et seulement si $z\in G_L(A)$ et $|z-a_{ii}|\ge L_i$ i = 1, 2, ...n .

II.A.4) Soit $p\in\mathbbm{R}^n$. On note p>0 lorsque $p=(p_1,p_2,\dots p_n)$ et $p_j>0$ pour $j=1,2,\dots n$. Soient $A\in M_n(\mathbbm{C})$ et D_p matrice diagonale avec p>0. Déterminer $G_L(D^{-1}AD)$.

II.A.5)

a) Déduire de II.A.2) et II.A.4) l'inégalité

$$\rho(A) \le inf_{p>0} \left(\max_{i=1,2,...n} \frac{1}{p_i} \sum_{j=1}^n p_j |a_{ij}| \right).$$

b) Soit la matrice

$$A = \begin{pmatrix} 7 & -16 & 8 \\ -16 & 7 & -8 \\ 8 & -8 & -5 \end{pmatrix}.$$

- i) Montrer que le majorant de $\rho(A)\,$ donné par II.A.5)-a est supérieur ou égal à $\frac{83}{3}\,.$
- ii) Donner une valeur approchée de $\rho(A)$ (on pourra utiliser la calculatrice).

II.B - Applications

II.B.1) Soit $A \in M_n(\mathbb{C})$ telle que

$$\forall i \in [1, 2, \dots n]$$
 $|a_{ij}| > L_i$.

On dit que A est strictement diagonale dominante (SDD).

- a) Montrer que si A est SDD alors A est inversible.
- b) Si A est SDD et si de plus $\forall i \ a_{ii}$ est réel et strictement négatif, montrer que pour tout $\lambda \in \sigma_A$, $Re(\lambda) < 0$.
- c) Si *A* est une matrice réelle symétrique et SDD, énoncer une condition suffisante pour qu'elle soit définie, positive.
- II.B.2) Soit B diagonalisable. Montrer qu'il existe une constante $\kappa_{\infty}(B)$ telle que

$$\forall E \in M_n(\mathbb{C}) \;,\; \forall \hat{\lambda} \in \sigma_{B+E}, \exists \lambda_i \in \sigma_B \; \left| \hat{\lambda} - \lambda_i \right| \leq \kappa_\infty(B) N_\infty(E) \;.$$

Partie III -

Cette partie est indépendante de la Partie II, à l'exception de III.B.3.

III.A - Préliminaire

 $\mathbb{C}_n[X]$ est le \mathbb{C} - espace vectoriel des polynômes de degré $\leq n$ à coefficients complexes. Soit $t \to P_t$ une application de [0,1] dans $\mathbb{C}_n[X]$:

$$P_t(X) = X^n + \sum_{j=1}^n c_j(t) X^{n-j}$$

où les n applications $t \to c_i(t)$ sont des fonctions continues de [0,1] dans $\mathbb C$.

On note Z_t l'ensemble des racines de P_t qui est un sous-ensemble de $\mathbb C$.

III.A.1) Montrer qu'il existe R > 0 tel que

$$\forall t \in [0, 1]$$
 $Z_t \subset D(0,R)$.

III.A.2) Soit t_0 fixé et $X_0\!\in\! Z_{t_0}.$ Montrer que la proposition (P) suivante est vraie

$$(P) \qquad \forall \varepsilon > 0, \, \exists \eta > 0, \, \forall t | t - t_0 | < \eta, \, \exists X_t \in Z_t, \, |X_t - X_0| < \varepsilon.$$

On pourra raisonner par l'absurde et écrire la proposition (non (P)).

III.B -

III.B.1) Exhiber une matrice $A \in M_2(\mathbb{C})$ pour laquelle $D_1(A)$ (notation Partie II) ne contient pas de valeurs propres de A.

III.B.2) Soit $A\in M_n(\mathbb{C})$ et $G_L(A)$ défini dans II. On se propose de prouver la propriété suivante :

si $\forall j=2,3,...n$, $D_1(A)\cap D_j(A)=\varnothing$, le disque $D_1(A)$ contient au moins une valeur propre de A.

On suppose donc que, $\forall j=2,3,...,n$, $D_1(A)\cap D_i(A)=\varnothing$.

On écrit A=D+B où D est diagonale et $B=(b_{ij})$ avec $b_{ij}=a_{ij}$ pour $i\neq j$ et $b_{ii}=0$.

On définit l'application : $t \in [0,1] \rightarrow A(t) = D + tB \in M_n(\mathbb{C})$.

- a) Montrer que $G_L(A(t)) \subset G_L(A)$.
- b) Soit $E = \{t \in [0,1] | \exists \lambda_t \in \sigma_{A(t)} \cap D_1(A) \}$.
 - i) Montrer que $E \neq \emptyset$.
 - ii) Montrer la propriété $\forall t \in E, \exists \eta > 0,]t \eta, t + \eta [\cap [0, 1] \subset E.$

iii) Soit $k \to (t_k)_{k=1,2,\dots}$ une suite d'éléments de E qui converge vers $a \in [0,1]$; montrer que $a \in E$.

On admettra que les seules parties à la fois ouvertes et fermées dans [0,1] sont \emptyset et [0,1].

- iv) En déduire que E = [0,1]. Conclure.
- III.B.3) Déduire de la Partie II et de la Partie III des propriétés du spectre de la matrice A définie dans la question II.A.1)

Partie IV - (indépendante de II et III)

Rappels : sur $M_n(\mathbb{C})$ on définit le produit hermitien et la norme associée ou norme de Frobenius N_2 :

Pour A et $B \in M_n(\mathbb{C})$, $\langle A, B \rangle = Tr(AB^*)$ et

$$N_2(A) = \sqrt{\langle A, A \rangle} = \sqrt{\sum_{i, j = 1, 2, ...n} |a_{ij}|^2}$$
.

TV.A -

IV.A.1) Vérifier que N_2 est bien une norme matricielle sur $M_n(\mathbb{C})$.

Étant donnés A et $B\in M_{n,\,p}(\mathbb{C})$, on définit leur H–produit noté $A\times_H B\in M_{n,\,p}(\mathbb{C})$ par $(A\times_H B)_{ij}=a_{ij}b_{ij}(i=1,2,...n\quad j=1,2,...p)$. IV.A.2)

a) Si A et $B\in M_{n,\,p}(\mathbb{C})$, et si $D\in M_n(\mathbb{C})$ et $\Delta\in M_p(\mathbb{C})$ sont des matrices diagonales, établir les égalités :

$$D(A \times_H B)\Delta = (DA\Delta) \times_H B = (DA) \times_H (B\Delta)$$
.

Donner deux égalités semblables pour $D(A \times_H B)\Delta$.

- b) Soient A et $B \in M_{n, p}(\mathbb{C})$, et $x \in \mathbb{C}^p$, établir l'égalité : $(AD_x^{\ \ t}B)_{ii} = [(A \times_H B)x]_i$
- c) Si A et $B \in M_{n,p}(\mathbb{C})$, $y \in \mathbb{C}^n$, $x \in \mathbb{C}^p$ montrer que $y^*(A \times_H B)x = Tr(D_v^*AD_x^{\ t}B).$

On pourra introduire la matrice colonne $e={}^t(1,1,\ldots 1)$, utiliser les questions a) et b) en remarquant que $D_v e=y$

d) En déduire que $x^*(A \times_H \overline{B})x = \langle D_x^* A D_x, B \rangle$.

IV.B - Dans la suite on suppose $K = \mathbb{R}$, toutes les matrices sont à coefficients réels.

IV.B.1) Soit $S \in S_n^+(\mathbb{R})$, montrer qu'il existe $T \in M_n(\mathbb{R})$ telle que $S = {}^tTT$.

Que peut-on dire de T si $S \in S_n^{++}(\mathbb{R})$?

- IV.B.2) Soient A et $B \in S_n^+(\mathbb{R})$, montrer que $A \times_H B \in S_n^+(\mathbb{R})$. Que peut-on dire si A et $B \in S_n^{++}(\mathbb{R})$?
- IV.B.3) On se propose d'obtenir un encadrement des valeurs propres de $A \times_H B$ quand A et $B \in S_n^+(\mathbb{R})$.
- a) On désigne par $\lambda_{\min}(A)$ (resp. $\lambda_{\min}(B)$) la plus petite valeur propre de A (resp. B) et par $\lambda_{\max}(A)$ (resp. $\lambda_{\max}(B)$) la plus grande.

Montrer que les matrices $B - \lambda_{\min}(B)I_n$ et $A \times_H (B - \lambda_{\min}(B)I_n) \in S_n^{\dagger}(\mathbb{R})$.

- b) Soit $\lambda(A \times_H B)$ une valeur propre de $(A \times_H B)$ et x un vecteur propre pour cette valeur propre $(\|x\|_2 = 1)$. Évaluer ${}^tx(A \times_H B \lambda(A \times_H B)I_n)x$ et en déduire $\lambda(A \times_H B) \ge \lambda_{\min}(B)$. $(\min_i \ a_{ii})$
- c) Montrer que $a_{ii} \ge \lambda_{\min}(A)$ et en déduire la minoration $\lambda(A \times_H B) \ge \lambda_{\min}(A)\lambda_{\min}(B).$
- d) Établir de même la majoration $\lambda(A \times_H B) \leq \lambda_{\max}(A) \lambda_{\max}(B).$

••• FIN •••