Colle n°7: Détermination d'une borne inf

 $\underline{\text{\acute{E}nonc\acute{e}}}: \text{Soit } E = \mathcal{M}_n(\mathbb{R}) \text{ et } P = \mathcal{SL}_n(\mathbb{R}) = \{M \in E, \det(\overline{M}) = 1\}. \ \varphi : M \in E \mapsto \operatorname{Tr}({}^tMM).$

1) Montrez que $\varphi_{|P}$ atteint sa borne inférieure.

2) Déterminer $\inf_{M \in P} \varphi(M)$. En quelles matrices est-elle atteinte?

Solutions:

1) $< A, B >= \text{Tr}({}^t A B)$ est un produit scalaire sur $E. \varphi : M \in E \mapsto \|M\|^2 \ge 0$ est donc \mathcal{C}° .

On a $\varphi(I_n) = n$ donc $\inf_{M \in P} \varphi(M) \leq n$ donc appartient à la boule B'(0, n).

Or celle-ci étant fermée bornée, elle est compacte, donc $\varphi_{|P}$ \mathcal{C}° y atteint sa borne inférieure.

- 2) Montrons d'abord que $M \in P \mapsto^t MM$ décrit $\mathcal{S}_1^{++} = \mathcal{S}^{++}(\mathbb{R})$ de det 1 :
- Pour $M \in P$ la matrice tMM est symétrique (clair) définie positive car :

$$<^t MMX, X> = < MX, Mx> = \|MX\|^2 \ge 0$$
 et $\|MX\|^2 = 0 \Rightarrow MX = 0 \Rightarrow X = 0$

• Pour $S \in \mathcal{S}_1^{++}$, d'après Choleski : S = MM avec $\det(S) = 1 = \det(M)^2$.

Ainsi le problème revient à déterminer le minimum de Tr(S) pour $S \in \mathcal{S}_1^{++}$.

S symétrique réelle donc diagonalisable : $S = P^{-1}DS$ donc ça revient à :

minimiser
$$\sum_{\lambda_i \in \operatorname{Sp}(S)} \lambda_i$$
 sachant que $\det(S) = \prod_{\lambda_i \in \operatorname{Sp}(S)} \lambda_i = 1$

D'après l'inégalité arithmético-géométrique on a :

$$\sqrt[n]{\prod \lambda_i} = 1 \leqslant \frac{\sum \lambda_i}{n} \Rightarrow \sum \lambda_i \geqslant n$$

avec égalité si $\forall i, \lambda_i = 1$ soit $S = I_n$.

Conclusion: le min est atteint pour $M \in P$ tel que ${}^tMM = I_n$ donc sur $\mathcal{O}_n(\mathbb{R})$.