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a b s t r a c t

Transfinite surface interpolation is a classic topic of computer-aided geometric design (CAGD), and many
non-quadrilateral schemes are known. Surfaces defined solely by means of their boundary curves and
cross-tangent functions are needed, for example, in three-dimensional curve network-based design, and
to fill complex irregular holes such as in vertex blending. This paper deals with interpolating so-called
tangential ribbons. Former schemes are enhanced and extended in order to minimize shape artifacts
and to provide a more natural patch interior. The proposed representation is based on irregular convex
domains that correspond to the lengths and orientations of the boundary curves. The mapping of the
individual ribbons within the n-sided domain is calculated by focused parameterization methods that
ensure a balanced orientation related to the center of the domain and avoid parametric shearing. Distance-
based blending functions ensure that modifying or inserting a small edge will have only a local effect over
the n-sided patch. Constructions to create one-sided or two-sided patches are also presented. Examples
and open research topics conclude the paper.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A fundamental theme in computer-aided geometric design
(CAGD) is to create mathematical representations for complex
free-form objects, which are composed of several smoothly
connected surface patches. While the majority of such patches
are four-sided, almost all industrial objects contain general n-
sided patches that are inserted into some arrangement of the
quadrilaterals. Most frequently three-, five-, and six-sided patches
are needed; however one-sided or two-sided patches may also
occur in practical design.

There are two important applications of n-sided patches.
The surface may be a relatively large functional part, satisfying
aesthetic and/or engineering requirements, where shape control
and fairness are of primary importance. Alternatively, the surface
is a relatively small piece to fill holes or create vertex blends;
these are fundamentally defined by boundary constraints, and only
natural transition in the interior matters.

Several techniques have been published in the CAGD literature
for creating general topology surfaces [1]. We enumerate basic
approaches characterizing how boundaries are defined.
(i) Trim and stitch. In most CAD/CAM systems four-sided surfaces
are created by standard operations (sweeping or lofting, etc.);
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then non-four-sided pieces are obtained by removing certain parts
using Boolean operations or intersections. The adjacent patches
can only be stitched togetherwith approximateG1 orG2 continuity,
within given tolerances.
(ii) Quadrilaterals. Often only four-sided surfaces are available,
and n-sided pieces must be subdivided into quadrilaterals. These
generally share common internal boundaries that connect the
midpoints of the sides with a well-chosen center point (central
splitting). Picking optimal subdivision curves and providing
internal smoothness are difficult problems. T-splines [2] also
belong to this category, and they represent a promising new
approach.
(iii) Polyhedral surfaces. These surfaces are created by various pro-
cedural techniques,where a composite surface is created by (recur-
sively) subdividing a topologically general three-dimensional (3D)
control polygon. Applying the well-known recursive subdivision
methods or surface splines, a set of smoothly connected quadri-
laterals together with n-sided surface elements is created [1]. This
approach may face difficulties when explicitly prescribed bound-
aries and cross-derivative functions need to be interpolated.
(iv) Genuine n-sided patches. In this case, we define the patch by
a single equation (or procedure). The tensor product schemes will
not work for n ≠ 4 sides in general. There is a wide variety of n-
sided patches, where ‘‘non-standard’’ representations are applied;
see below. In transfinite surface interpolationweassume that there
are well-defined boundaries and cross-derivative functions. The
boundaries are parametric curves, but the actual representation
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has no significance. We do not want to or cannot provide control
points for the interior, and our interest is to create natural
transitions solely by blending together the given boundaries and
tangential constraints.

Practical experience shows that classical schemes may produce
unexpected shape artifacts when the boundaries have uneven
lengths or are highly curved. This motivated our work to enhance
existing representational schemes to provide fair patches even
for irregular boundary configurations. After briefly reviewing the
n-sided surface literature (Section 2), we go back to Coons patches
and generalize this approach in three different ways (Section 3).
Then various aspects of patch construction are investigated,
including domain definition, distance-based blending functions,
and different local parameterization schemes (Sections 4 and 5).
Illustrative test examples (Section 6) and suggestions for future
work conclude the paper.

2. Previous work

Transfinite surface interpolation is a classical area of CAGD. Its
origin goes back to the late 1960s, when Coons formulated his
Boolean sumsurface [3]. Thiswas followed byGordon’s generaliza-
tion of interpolating a rectangular network of curves [4]. In the next
two decades, several new approacheswere developedmoving first
to triangular domains, then later to n-sided domains [1]. In spite
of the important developments, it seems that there are only two
comprehensive reviews on n-sided patches [5,6], but these have
become somewhat dated. In this section, we refer only to a selec-
tion of papers, which were found to be the most pertinent to our
current work.

The research on genuine n-sided patches started with the
pioneering work of Gregory and Charrot [7,8]; this was followed
by a sequence of early contributions by Sabin [9,10], Storry and
Ball [11], Kato [12], and Várady [13]. Later, Plowman and Charrot
tuned Gregory’s patch tomeet the requirements for setback vertex
blending [14]. Methods differ in the way how boundary functions
are blended together; for example, Gregory suggested the use of
corner interpolants, while Kato combined side interpolants to obtain
the final surface. Another aspect is whether additional correction
surfaces are needed or not, as in Coons’ formulation.

A group of important contributions directly produced control
point-based n-sided patches that are insertable into rectangular
Bézier or B-spline curve networks, including themethod of Hosaka
and Kimura [15], and the multi-sided generalization of Bézier and
B-spline patches by Loop and DeRose [16,17]. The necessity of
using two-sided patches was also pointed out in [18].

Concerning the domain of n-sided patches, the majority of
authors use regular n-sided domains; Kato [19] proposed a
concave projectable domain construction. Serious efforts have
been directed to handle internal holes; see [12,20]. The importance
of using non-uniform polygonal domains has turned out to be a
crucial quality issue for us, and we will return to this topic in
Section 4. Note that it is not necessary to have a closed domain
in the parameter space: Gao and Rockwood in [21] suggested a
scheme based on a special assignment between domain curves and
3D feature curves, which is capable of interpolating these curves in
a fairly general manner.

The most important difference amongst the various transfinite
approaches is the method of creating the local parameterization
and blending functions. One option is to use dependent local
coordinates, i.e. take two variables and compute the remaining
n − 2 parameters from them; see, for example, [15,9,10]. Another
option is to use the so-called overlap parameterization of 2n
variables (see [13]), where the parameters are constrained only
along the sides. There are several methods in which the local
parameters are computed independently by different geometric
procedures, such as dropping perpendicular distances to the
polygon sides, radial constructions, and line sweeps. These will be
analyzed in detail later; see Section 5.

The degree of continuity between themulti-sided patch and the
adjacent patches can be a crucial issue. The majority of solutions
ensure only G1 continuity. Some methods generalize for G2 in
a relatively natural manner [3,12,16,17], and others apply more
complex reparameterization techniques; see, for example, [22,23].

A significant amount of research effort has been directed
recently to explore generalized barycentric coordinates. The
original motivation was to provide an adequate parameterization
for data points within convex and concave polygonal domains;
see papers on mean value coordinates, including a good list of
related references in [24,25]. This idea was later generalized for 3D
polyhedra, closed triangular meshes [26], and general polytopes.
Main applications include mesh parameterization, interpolating
discrete data of vector fields, texturemapping,mesh deformations,
amongst several others. The idea of using generalized mean value
coordinates to interpolate functions and derivatives has emerged
recently in [27,28], where barycentric blending functions are
defined by integrals over arbitrary domains.

In the following sections we will deal with various transfinite
schemes defined as the convex combination of individual paramet-
ric surface interpolants. Our focus is to compute non-regular polyg-
onal domains based on a set of given 3D boundary curves.

We investigate how to enhance the constituents of transfinite
representations focusing on special distance-based blending
functions and new parameterizations.

3. Coons patches and extensions

First, we revisit classic Coons patches, and then we derive three
generalized patch formulations over n-sided domains.

3.1. Basic scheme

A G1 Coons patch is defined by four given boundary curves
S(u, 0), S(u, 1), S(0, v), and S(1, v), and four cross-derivative
functions Sv(u, 0), Sv(u, 1), Su(0, v), and Su(1, v). These parametric
functions determine a four-sided interpolating surface S(u, v)with
a common parameterization over the [u, v] unit square. The Coons
patch is the Boolean sum of two side-to-side surfaces and a four-
sided correction patch that eliminates the extra boundary terms
produced by the side interpolants. Using cubic Hermite blending
functions (α0(u) = 2u3

− 3u2
+ 1, α1(u) = −2u3

+ 3u2, β0(u) =

u3
− 2u2

+ u, β1(u) = u3
− u2) this can be written as follows:

U = [α0(u) β0(u) α1(u) β1(u)],
V = [α0(v) β0(v) α1(v) β1(v)],

Su = [S(u, 0) Sv(u, 0) S(u, 1) Sv(u, 1)],
Sv

= [S(0, v) Su(0, v) S(1, v) Su(1, v)],

Suv =

 S(0, 0) Su(0, 0) S(1, 0) Su(1, 0)
Sv(0, 0) Suv(0, 0) Sv(1, 0) Suv(1, 0)
S(0, 1) Su(0, 1) S(1, 1) Su(1, 1)
Sv(0, 1) Suv(0, 1) Sv(1, 1) Suv(1, 1)

 ,

S(u, v) = V (Su)T + SvUT
− VSuvUT .

The matrices Su and Sv contain the boundary constraints for
the side-to-side interpolants, and matrix Suv contains position,
derivative, and mixed derivative (twist) vectors at the four
corners. A schematic figure (Fig. 1(a)) shows the logic of Coons
patches; black ribbons represent positional and tangent functions
to be interpolated, grey ribbons the extra boundary terms to be
eliminated. The Boolean sum reproduces the prescribed curves and
G1 constraints along the sides of the domain.
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Fig. 1. Schemes for Coons and n-sided patches.
Fig. 2. Local coordinates.

Coons patch rearranged. For our forthcoming purposes a different
side-based indexing will be used. We retain the four-sided domain
[u, v] and introduce local side coordinates (si, ri), where si =

si(u, v), and ri = 1 − si−1 parameterizes each side in the
reverse direction. Assumea counterclockwise indexing in a circular
manner; in the four-sided case, s1 = u, r1 = v, s2 = v, r2 = 1 − u,
etc., as shown in Fig. 2.

Accordingly, we use different, side-based notations for the
positional and tangential constraints, Pi(si) and Ti(si), respectively.
Then P1(s1) = S(u, 0), T1(s1) = Sv(u, 0), P2(s2) = S(1, v),
T2(s2) = −Su(1, v), and so on. We will need to use the mixed
partial derivatives Wi(0) at the corners; they can be derived from
the cross-derivative functions Ti. (For the time being, we assume
that the twist vectors of the adjacent ribbons are compatible;
otherwise, Gregory’s correction terms [1] need to be applied.)

We collect the constant vector quantities that belong to a corner
in order to form separate correction terms. For example, at the
second corner, P2(0) = P1(1) = S(1, 0), T2(0) = −Su(1, 0),
T ∗

2 (0) = T1(1) = Sv(1, 0), and W2(0) = Suv(1, 0). The notation
T ∗

i (ri) is used instead of Ti−1(si−1) to match the corresponding
parameter ri. Sowe can rewrite the original equation by combining
the four side-interpolants and the four correction terms, as
follows:

S(u, v) =

4−
i=1

[α0(ri) β0(ri)]
[
Pi(si)
Ti(si)

]

−

4−
i=1

[α0(ri) β0(ri)]
[
Pi(0) T ∗

i (0)
Ti(0) Wi(0)

] [
α0(si)
β0(si)

]
.

Ribbon-based extension. It will be useful to concatenate the
positional and tangential constraints and introduce G1 ribbons
defined in the form of

Ri(si, ri) = Pi(si) + riTi(si).

Related correction terms are given as

Qi(si, ri) = Pi(0) + riTi(0) + siT ∗

i (0) + risiWi(0).

Here, only a single Hermite blending function α0 associated with
each side is needed to formulate a ribbon-based patch:

S(u, v) =

4−
i=1

Ri(si, ri)α0(ri) −

4−
i=1

Qi(si, ri)α0(ri)α0(si). (1)

This is not identical to the Coons patch, but it can easily be
shown that the positional and tangential boundary constraints are
satisfied, as expected.

3.2. Blending functions

For n-sided patches, convex polygonal domains in the (u, v)
parameter plane will be used. We are going to introduce general
blending functions based on a set of distance parameters di =

di(u, v), which represent some distance measure from each side
of the polygon (Fig. 2). At this point, the only property we use is
that di = 0 on side i and grows in a monotonic way as we move
away from this side.

We sum up interpolant surfaces multiplied by blending
functions. Let us evaluate the i-th product at an arbitrary point of
the i-th boundary as a function of di, i.e., Si(di) = Ri(di)αi(di). In
order to interpolate the positional data, αi(0) must be equal to 1.
In order to interpolate the tangential data, ∂Si

∂di
= R′

i(di)αi(di) +

Ri(di)α′

i(di) must yield only the tangential term on the border, i.e.,
α′

i(0) must be 0. For G1 continuous cross-derivative constraints,
this means that it is sufficient to use quadratic terms in the
blending functions. As can easily be shown, this also guarantees
that the effect of the k ≠ i boundaries and their cross-derivative
functions will vanish on the i-th side.

Three different blending functions – side blending λi, corner
blending κi, and a special side blending µi – will be investigated.
Let Dn

i1,i2,...,in denote
∏n

i≠i1,i2,...,in d
2
i .

The side blending functions must be equal to 1 on side i, and
vanish from 1 to 0 along sides i − 1 and i + 1. On the remaining
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(a) Side blending. (b) Corner blending. (c) Special side blending.

Fig. 3. Blending functions with contours.
n − 3 sides (k ≠ i − 1, i, i + 1), they should vanish; see Fig. 3(a).
This can be achieved by

λi(d1, . . . , dn) =
Dn
i−1,i + Dn

i,i+1
n∑

j=1
Dn
j−1,j

.

For example, at n = 4, i = 1,

λ1(d1, d2, d3, d4) =
d22d

2
3 + d23d

2
4

d21d
2
2 + d22d

2
3 + d23d

2
4 + d24d

2
1
;

i.e., if d1 = 0, then λ1 = 1; if d3 = 0, then λ1 = 0; and if d4 or d2 is
equal to 0 at d1 = d3, then λ1 = 0.5.

For this set of blending functions
∑n

i λi = 2, which will be
compensated by the corner blending functions (see below).

The corner blending functions are equal to 1 at corner i and vanish
from 1 to 0 along sides i − 1 and i. On the remaining n − 2 sides
they must be 0 (see Fig. 3(b)):

κi(d1, . . . , dn) =
Dn
i−1,i

n∑
j=1

Dn
j−1,j

.

For example, at n = 4, i = 1,

κ1(d1, d2, d3, d4) =
d22d

2
3

d21d
2
2 + d22d

2
3 + d23d

2
4 + d24d

2
1
;

i.e., if d4 = 0 and d1 = 0, then κ1 = 1; if d2 = 0 or d3 = 0, then
κ1 = 0; and if d1 = 0 and d4 = d2, then κi = 0.5.

The κi blending functions have the partition of unity prop-
erty. Note that squared terms of generalized barycentric coordi-
nates [25]may also produce corner blending functionswith similar
properties.

The special side blending functions are equal to 1 along side i, and
0 for all the remaining n − 1 sides where k ≠ i:

µi(d1, . . . , dn) =
Dn
i

n∑
j=1

Dn
j

.

This blending function is singular at the corner points; for example,
there is a jump between µ1(0, d2, . . . , dn−1, ε) = 1 and µ1(ε,
d2, . . . , dn−1, 0) = 0. This singularity vanishes when two adjacent
blending functions are added at a given corner:

lim
di−1→0,
di→0

µi−1(d1, d2, . . . , dn) + µi(d1, d2, . . . , dn) = 1.
Thus, for all domain points the µi blending functions also have the
partition of unity property. The blending functions are depicted in
Fig. 3(c). For example, at n = 4, i = 1,

µ1(d1, d2, d3, d4) =
d22d

2
3d

2
4

d21d
2
2d

2
3 + d22d

2
3d

2
4 + d23d

2
4d

2
1 + d24d

2
1d

2
2
,

i.e., if d1 = 0, then µ1 = 1; if d2 = 0 or d3 = 0 or d4 = 0, then
µ1 = 0.

Keep in mind that all side and distance parameters (si, di)
depend on the domain parameters (u, v), and the actual properties
of the patch will be determined by the blending functions and the
local parameterization of the ribbons.

3.3. Three approaches

Direct generalization of Coons patches. The genuine generaliza-
tion of Coons’ method is to take formula (1), run the index from 1
to n, and apply the side and corner blending functions tomerge the
ribbon and correction patches; i.e.,

S(u, v) =

n−
i=1

Ri(si, di)λi(d1, . . . , dn)

−

n−
i=1

Qi(si, ri)κi(d1, . . . , dn).

To our best knowledge, this direct formula has not been
proposed earlier, possibly due to the difficulties of finding
appropriate common parameterizations. The scheme is depicted
as in Fig. 1(b): the ribbons interpolate the i-th side and their effect
gradually vanishes along the (i−1)-th and (i+1)-th sides due to the
blending functions. The superfluous boundary data are eliminated
by the i-th and the (i+ 1)-th correction patches, yielding a correct
G1 interpolation.
Combining corner interpolants. Gregory et al. [7,14] suggested ap-
plying local corner interpolants, each created by two adjacent
boundaries and cross-derivative functions. It is possible to incor-
porate the previous correction terms into the corner interpolant,
and then only corner-type blending functions need to be used:

Ci(si, ri) = P∗

i−1(ri) + Pi(si) + siT ∗

i−1(ri) + riTi(si) − Qi(si, ri)

S(u, v) =

n−
i=1

Ci(si, ri)κi(d1, . . . , dn).

This scheme is shown in Fig. 1(c). The weighted corner inter-
polants gradually vanish as they reach the adjacent corners, and
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(a) Ribbons for five sides. (b) Direct generalization. (c) Corner interpolants. (d) Ribbon interpolants.

Fig. 4. Three basic approaches.
(a) Regular domain. (b) Proportional domain.

Fig. 5. Six-sided patch with ‘‘spider’’ lines.
the blending functions and the corresponding parameterization
ensure that the boundary constraints are reproduced along the
sides.
Combining ribbon interpolants. It is also possible to create ribbon-
based patches without correction terms using a special type of
side blending that avoids producing extra boundary data to be
eliminated. A similar solutionwas suggested by Kato [12], amongst
others. In this case, only the ribbons are weighted, and a special
convex combination is applied:

S(u, v) =

n−
i=1

Ri(si, di)µi(d1, . . . , dn).

This scheme is depicted as in Fig. 1(d).
Fig. 4 shows three transfinite patches using the same ribbon

input. As the contour lines show, it is not easy to distinguish
by shape, and different applications may set different priorities
to select the most favorable. In the following sections, we will
focus on other aspects, in particular domain and parameterization,
which have significant influence in creating nice n-sided patches.

4. Domain polygons

Our goal is to determine an appropriate non-regular convex
domain, based on the given loop of 3D boundary curves. The use of
non-regular polygons is needed for quality purposes, since domain
parameterization should ‘‘mimic’’ the shape of the n-sided patch. It
is similar to using non-uniform parameters for B-spline curves and
Fig. 6. Circular polygonal domain I.

surfaces. An ‘‘evenly’’ located set of constant parameter lines in the
domain should bemapped roughly into an ‘‘evenly’’ distributed set
of curves on the 3D surface.

We have found that, when boundaries of different lengths
are used with a regular domain polygon, a strong distortion of
the parameterization may occur, leading to undesirable shape
artifacts. In Fig. 5, we show spider-net curves, i.e. constant
parameter lines parallel to the domain sides; observe the
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Fig. 7. Circular polygonal domain II.
difference between the parameterization of the regular and non-
regular domains. Another example comparing mean curvature
maps will be shown later in Fig. 17.

Let Ω denote the convex domain in the (u, v) plane, and Γ

its boundary. pi = (ui, vi), i = 1, . . . , n are the vertices of the
polygon to be determined. Index i runs in a counterclockwise order
(Fig. 6). Denote the arc lengths of the given 3D boundary curves by
Li, and the angles between the end tangents of the (i − 1)-th and
i-th boundaries by φi. We would like to compute a convex domain
‘‘similar’’ to the 3D configuration. Denoting the sides and the angles
of the domain by li and αi, respectively, we seek to minimize the
squared deviation of the chord lengths and the angles, i.e.,

∑
(li −

clengthLi)2 +
∑

(αi − cangleφi)
2, where clength and cangle are properly

chosen constants. This is a non-linear problem, but simple heuristic
methods are proposed that work well in practice.
(i) The simplest is to place domain vertices proportionally by arc
length on the perimeter of a unit circle (inscribed polygon). Place
the first vertex on the u axis, and the subsequent ones (i =

2, . . . , n − 1) at angle

βi = 2π ·

i−1∑
k=1

Lk

n∑
k=1

Lk

(see Fig. 6).
(ii) For a better solution, instead of central angles, make the sides
of the polygon proportional to the arc lengths of the boundaries.
As Fig. 7 shows, two cases need to be distinguished: in case A, the
center point of the circle is contained in the convex hull (Fig. 7(a)),
while, in case B, it lies outside (Fig. 7(b)).

Now, take a sufficiently large circle with radius R, and place
the chords Li onto the circle one by one, placing an endpoint of
the largest side (denoted here by L1) onto the u axis (Fig. 7(c)).
Then start decreasing the radius, and let the chord endpoints slide
towards the other end, i.e., p∗

1 moves towards p1. In case A, this
will be successfulwhen the central half-angles of the chords satisfy∑

arccos Li
2R = π , assuming L1 < 2R; otherwise, at one instant

of the circle shrinking process, 2R becomes equal to L1 without
closing the loop. Then radius R needs to start growing again (case
B), until we find an appropriate configuration where

∑n
2 arccos

Li
2R

is equal to arccos L1
2R . Note that, based on the given construction,

for the existence of such a domain polygon it is sufficient to have
L1 <

∑n
2 Li.

(iii) The third simple heuristic takes into consideration not only the
lengths of the boundaries, but the local 3D angles, φi, as well. First,
we normalize the angles to satisfy the necessary angle criterion
for the n-sided convex polygon; i.e., let cangle = (n − 2)π/

∑
φi;

then αi = cangleφi. Now, take the polygon sides in sequence,
retaining the angles, which will likely yield an open polyline,
Fig. 8. Length-/angle-based convex polygonal domain.

having a difference vector e between the first and the last points.
In order to improve this, we fix the very first point, and modify the
subsequent ones sequentially, first by 1

n e, then by i
n e (Fig. 8). In the

closed polygon obtained, both the chord lengths and the angles are
somewhat distorted, but the result proved to be satisfactory in our
experiments.

5. Local parameterization schemes

The essence of all transfinite schemes is parameterization. Hav-
ing a given point in the domain, (i) we determine n correspond-
ing data points on the individual interpolants and (ii) combine
these by corresponding blending functions. For example, the rib-
bon mapping (u, v) → (si, di) produces local ribbon coordinates
to be substituted into Ri(si, di); and (u, v) → di produces n dis-
tance values to compute the weights of the blending functions
µi = µi(d1, . . . , dn). These mappings are fundamental in defin-
ing the shape of the patch and the differential properties along the
sides.

In this section, the subject of our investigation is how to
calculate these local coordinates, and, as will be shown, there is a
wide variety of algorithms to do this. Simplemethods of calculating
distance parameters include perpendicular projection, where we
take a (u, v) pair, and drop a perpendicular line to each side.
Alternatively, side-based barycentric coordinates can be defined that
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Fig. 9. Computing the radial parameterization.

divide the area of the triangle [(u, v), pi, pi+1] by that of the whole
polygon; then this value is normalized by a constant n/2 to obtain
di. Another measure – chord-based coordinates – was suggested by
Kato [19]. Itsmain advantage is that it can be used for domainswith
internal hole loops and concave corners as well. Take the chords
that connect the domain point with the corners of the i-th side;
then

di = |(u, v) − pi| + |(u, v) − pi+1| − |pi+1 − pi|.

Distance parameters may be inadequate to determine the
related side parameters. For example, in the perpendicular
method, the footpoint may fall beyond the actual side, so it is not
a good way to define si. Kato proposed si = di−1/(di−1 + di+1),
which guarantees that si will be in the [0, 1] interval. However, this
will not yield a linear mapping for si. For example, the parametric
midpoint is not necessarily identical to the midpoint of the chord,
in which case further reparameterization is needed.

The (si, di) parameters can be determined by so-called line-
sweep constructions as well, as described below.

Radial distance functionswere suggested by Charrot andGregory
[7], and these also work for non-regular domains. As shown in
Fig. 9, the extended sides Γi−1 and Γi+1 intersect at point ci. A line
sweep connecting ci and (u, v) intersects side i at point ei; then
di = |(u, v) − ei| and si = |ei − pi|.

We propose another method, called central line sweep, to create
sweeping lines that run from the left edge Γi−1 to the right edge
Γi+1 in a different way than the radial projector. As shown later,
this helps to avoid skewedparameterizations by forcing themiddle
line of a ribbon to bemappedonto a line that connects themidpoint
of side i and the center point of the domain c = (cu, cv); see Fig. 10.
c might be calculated as the average of the corners, but practice
shows that for non-regular domains a weighted average of chord
lengths works better:

c =

0.5
∑
i
pi(li−1 + li)∑
i
pili

.

Our goal is to find a parameterizing function r(s, d) for which
the s = 0.5 constant parameter line contains the center point of the
polygon, i.e., for some unknown dc parameter value r(0.5, dc) = c .
We deal with the local parameters of side 1. For simplicity’s sake,
let us position corner p1 at the origin, and place p2 on the u-axis. A
linear by quadratic map is introduced:

r(s, d) = p2s + [w1(1 − s)2 + 2w12(1 − s)s + w2s2]d, (2)

where vectors w1, w12, w2 define the direction of the sweep. Not
only is the parameter value (dc) unknown, but the vector w12 =
Fig. 10. Computing the central line sweep parameterization.

(wu
12, w

v
12), as well. To simplify our calculation, we require that

wv
12 = 0.5(wv

1 + wv
2). On the halving line s is 0.5, so at the center

cv
= 0.25[wv

1 + 2wv
12 + wv

2]dc,

and thus dc = 2cv/(wv
1 +wv

2). From the other coordinate equation,

cu = pu20.5 + 0.25[wu
1 + 2wu

12 + wu
2]dc,

so we can express the missing u component of w12. Having the
three direction vectors defined, we can determine (s0, d0) for
any domain point (u0, v0). Express d0 from Eq. (2); then, after
solving a quadratic equation for s0, we obtain the requested local
coordinates:

d0 =
u0 − pu2s0

wu
1(1 − s0)2 + 2wu

12(1 − s0)s0 + wu
2s

2
0

=
v0

wv
1(1 − s0) + wv

2s
.

If needed, one can reparameterize (s, d) → (s, t) to force the
center point of the ribbon on its middle line to correspond to the
center of the domain. In this case, t = [(1−s)2+2 1−dc

dc
(1−s)s+s2]d

ensures that r(0.5, 0.5) = c .
Both the radial and the central line sweep parameterizations

map the linear s-constant parameter lines of a ribbon into straight
lines in the domain space; however, this is not necessary. Instead
of a line sweep it is also possible to create a doubly curved,
biquadratic mapping, as suggested by Várady [13]. In this case, the
(s, d) coordinates are determined by biquadratic Bézier control
points, naturally placed on the sides of the domain; see Fig. 11.
While this mapping is linear on the ith-side, it is quadratic for a
general (s, d) within the domain:

(u, v) =

2−
i=0

2−
j=0

CijB2
i (s)B

2
i (d).

To compute (s, d), an inverse mapping from (u, v) is performed by
a few Newton–Raphson iterations.

Space limits us from going into the details of how to param-
eterize interpolants for the direct generalization approach (see
Section 3). On each boundary, three vector terms – one from the
ribbon interpolant and two from the correctionpatches – are added
together. In order to reproduce the cross-derivatives of the rib-
bon, the parameterization must satisfy certain differential proper-
ties. As shown in Fig. 11(a), the cross-directionparameterization on
the i-th side is determined by the local control point pairs 00–10,
01–11, 02–12. On the i+1-th side the parameterizationwill be de-
fined by pairs 02–01, 12–11, 22–21. These are identical to the con-
trol point pairs of the subsequent (i, i+1) corner parameterization,
denoted by 00–10, 01–11, 02–12 in Fig. 11(b), which compensate
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(a) Side parameterization. (b) Corner parameterization.

Fig. 11. Biquadratic parameterization.
the extra term coming from the i-th side interpolant along the i+1-
th side. In this way, the biquadratic scheme automatically satisfies
the requested differential properties for the direct generalization
approach.

6. Discussion and examples

In the previous sections, we have discussed the basic elements
for constructing n-sided transfinite surfaces. We continue analyz-
ing important quality issues that are needed for practical applica-
tions.
(i) It is an obvious and necessary condition that the boundaries and
the cross-derivatives must be ‘‘fair’’. We desire compatible twist
vectors for the cross-derivatives; however, this is not required
for the ‘‘combining ribbons’’ scheme, as the rational blending
functions will average incompatible twists.
(ii) We have already expressed our view concerning the impor-
tance of non-regular domains; see Fig. 5, shown earlier.
(iii) The next issue is investigating the influence of the individual
boundaries for the overall shape, which is strongly related to the
distance measures applied. Loosely speaking, one can compare
the strength of the individual ribbons near the boundaries with
the interior where the convex combination dominates. If the
ribbons are ‘‘too wide’’, then the surface will adhere to them,
and there may be sudden curvature changes in the interior. In
the ‘‘too narrow’’ case, the influence of the ribbons is weak, and
sudden curvature changes may occur close to the boundaries.
Finding a good compromise is a delicate challenge, and it is not
straightforward to pick the best method.

Fig. 12 shows color maps that correspond to the influence
of the individual blending functions on the domain. Each border
curve is colored differently, and the vanishing effect of the blends
is depicted. Black lines limit the areas where the weight of the
given interpolants is more than 90%. White lines indicate locations
where two distances taken from two different sides have the same
value. There are vertices inside the domain where more than two
distances are identical.

The first example in Fig. 12 shows roughly equal distances from
the sides of the domain, which means that the midpoint of the
surface will be a combination of the midpoints of the ribbons by
weight 1

n . In otherwords, the ribbons, even the small green one, are
almost uniformly pulled towards the center point of the surface.
The second example shows a proportional distance computation,
where shorter edges have smaller effect towards the interior.
In this figure, perpendicular distances were used to obtain this
Voronoi-like structure of white edges. The effect of the small green
edge quickly vanishes, and the three longer sides on the left side
blend together and entirely dominate the small one. The left part
Fig. 12. Blending function distributions.

of the surface acts independently, regardless of whether the green
edge is inserted or removed. Clearly, this behavior is desirable in
the majority of practical applications.
(iv) The individual ribbons should map onto the domain in a well-
oriented manner; for example, we want the middle parameter
lines of each ribbon to lie somewhere around an approximate
halfway line in the domain. Unfortunately, this is not always
the case, and shearing effects can be observed when the domain
polygon has large angles at the corners. Consider the radial
parameterization in Fig. 13. The first set of constant parameter lines
(si, di) relates to the top right side, and the second set (si−1, si)
to the corner between the right and the top right sides. Finally,
the third picture set shows all the halfway lines of the individual
ribbons si = 0.5 mapped to the domain. Observe that the halfway
lines are awkwardly distributed, and accordingly the halfway lines
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Fig. 13. Radial distance function: (a) (s3 , d3) and (b) (s2 , s3) parameter lines, (c) halving lines.
Fig. 14. Central line sweep: (a) (s3 , d3) and (b) (s2 , s3) parameter lines, (c) halving lines.
of the ribbons aremapped in a distortedmanner. Note that the blue
halfway line coming from the top side is strongly skewed to the
right side. Ideally it should be located somewhere in the center.

This deficiency is rectified by the central line sweep method.
Compare the constant parameter lines in Fig. 14 with the previous
subfigures. By construction, the halfway lines go through the
center point, and, as a result, the ribbons will be mapped in a more
balanced manner. This will improve the shape of the surface and
minimize shape artifacts in skewed configurations.

(v) Without going into details, we note that the line sweep
technique can be applied to generate two-sided and one-sided
patches, as well; see Figs. 15 and 16. The domain of the two-
sided patch is bounded by two parabolic arcs, and the distance
parameters are computed using simple line sweeps by a quadratic
function. The ribbons are combined by simple blending functions
of type

Ki(d1, d2) =
d2j

d21 + d22
, i, j ∈ {1, 2}, i ≠ j.

The one-sided patch is also a combination of two entities.
Take a closed curve and an associated ribbon without local self-
intersection, and an auxiliary point with a normal vector to define
an annular ribbon in the middle of the patch. Apply the above
blending functions to obtain the surface. One-sided patches are
not only of theoretical interest, but there are practical cases
where protrusions or depressions controlled by ribbons need to be
created.

To conclude our discussion, it would be hard to pick a single
best method from the three proposed transfinite schemes, i.e.,
generalized Coons patches, corner interpolant-based patches and
side interpolant-based patches. In themajority of ordinary cases, it
is hard to visually distinguish between them (see Fig. 4), and shape
artifacts can only be observed when the boundary segments have
uneven lengths and are highly curved.
Fig. 15. Two-sided patch.

Fig. 16. One-sided patch.

This may disappoint some of our readers, but there are
extraordinary configurationswhere corner-based patches produce
better curvature distribution, while in other cases side-based
patches are better. Generalized Coons patches – in some sense
– combine the previous two approaches, and thus they merge
the good and bad shape features. At the same time, their
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Fig. 17. Mean curvature map of a model using regular (top) and non-regular (bottom) domain polygons.
parameterization is more demanding, and the evaluation of the
patch takes somewhat longer.

Nevertheless, our experience shows that by using non-regular
domains and the central line sweep parameterization it is possible
to significantly improve the surface quality and avoid shape
artifacts in extraordinary cases. A six-sided test example to
compare regular and non-regular domains is shown in Fig. 17; the
mean curvature map shows the differences in the interior and at
the corners.

Another simple test object is shown in Fig. 18 using central
line sweeps. The given 3D curve network defines two three-sided
patches, one five-sided patch, and one six-sided patch. As can
be seen, the configuration includes smooth and sharp edges. The
boundary ribbons are automatically generated based on the curve
network and the patches by means of these ribbons. For smooth
edges, the ribbons areG1 compatible; thus the adjacent patches are
alsoG1. The ribbons have an extra degree of freedom inmagnitude,
which can be useful for users to adjust the fullness of these patches.

7. Conclusion and future work

Different schemes to create n-sided transfinite surfaces have
been investigated. After generalizing Coons’ classical formulation,
various extensions to enhance n-sided patch constructions were
derived by which more natural shapes emerge, especially when
the boundaries of the patch have uneven lengths, or are strongly
curved.

There are many opportunities for future research. Introducing
non-convex domains or domains with curved boundaries can
reduce the number of artificial subdivisions and enhance the
surface quality. Providing additional shape control for the interior
of the patches is a challenging issue. The automatic generation
of natural and compatible cross-derivative functions based on
a general free-form curve network with G1 and G2 continuity
would be a disruptive technological advance. Finally, it is an
important open area to develop fairing techniques for ribbon-
based transfinite surfaces.
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