
Meaningful Scales Detection along
Digital Contours for

Unsupervised Local Noise Estimation
Bertrand Kerautret and Jacques-Olivier Lachaud

Abstract—The automatic detection of noisy or damaged parts along digital contours is a difficult problem since it is hard to distinguish

between information and perturbation without further a priori hypotheses. However, solving this issue has a great impact on numerous

applications, including image segmentation, geometric estimators, contour reconstruction, shape matching, or image edition. We

propose an original strategy to detect what the relevant scales are at which each point of the digital contours should be considered. It

relies on theoretical results of asymptotic discrete geometry. A direct consequence is the automatic detection of the noisy or damaged

parts of the contour, together with its quantitative evaluation (or noise level). Apart from a given maximal observation scale, the

proposed approach does not require any parameter tuning and is easy to implement. We demonstrate its effectiveness on several

datasets. We present different direct applications of this local measure to contour smoothing and geometric estimators whose

algorithms initially required a noise/scale parameter to tune: They show the pertinence of the proposed measure for digital shape

analysis and reconstruction.

Index Terms—Local noise detection, discrete geometry, maximal segments, shape analysis

Ç

1 INTRODUCTION

THE geometric analysis of discrete or digital contours is of
primary importance for shape recognition or shape

matching. Discrete contours that arise naturally from
digitization processes or from image segmentation algo-
rithms are by nature nonsmooth and their geometric
analysis requires specific approaches. Examples of such
approaches can be found in the discrete geometry field,
where the most accurate techniques generally rely on the
extraction of maximal segments, which are local affine
reconstruction of contours.

In most cases, digital contours are not perfect digitiza-
tions of ideal shapes but present noise and perturbations.
This is also true for regions produced by most segmentation
algorithms, whose regularizers penalize length but not
curvature. Rather recently, blurred segments were introduced
to take into account both the discreteness and possible noise
of data [1]. They are parameterized with a value related to
the thickness of the perturbation. Based on this, discrete
tangent and curvature estimators robust to noise have been
developed [2], [ 3]. Similarly, the curvature estimator of [4]
requires a smoothing parameter related to the amount of
noise. In pattern recognition too, many techniques for

extracting feature points, dominant points, or corners rely
on one or more external parameters that are determinant for
removing contour perturbations due to noise (e.g., see [5]).

Two factors limit the applicability of these techniques:
First, their parameterization requires a user supervision,
second, this parameter is global to the shape, while the
amount of noise may be variable along the shape.

Strangely enough, this issue has not been tackled in the
discrete geometry and pattern recognition communities.
However, the similar problem of noise detection and
appraisal in gray-level or color images has been studied a
lot in the image processing and edge detection community.
It has led to the development of multiscale analysis [7], [ 8].
In a way, noise detection is postponed to a later process
which will analyze the scale-space instead of the image.
Further improvements lead to the automatic determination
of a local scale, whose aim is either to improve edge
detection or image restoration. Some approaches rely on a
global optimization scheme, like the one of Jeong and Kim
[9]. Its optimization is, however, difficult. The Mumford-
Shah model of image segmentation [10] is also a global
technique for getting rid of the noise by fitting a piecewise
continuous function. However, the delineated regions may
have perturbed boundaries. The noise removal algorithm
based on nonlinear total variation by Rudin et al. [6] is
efficient to remove a global Gaussian noise of known
characteristics. As illustrated in Fig. 1, this approach is less
convincing for binary images with variable noise. Along the
same lines, global approaches like morphological opera-
tions (see Fig. 1) or Gaussian smoothing failed at preserving
features and removing noise at the same time.

Most methods adopt a local optimization procedure for
finding the best local scale. Elder and Zucker [11] determine
the minimum reliable scale by fitting a blurred step-model of
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a contour. Kervrann [12] proposes to determine the best local
window for a local piecewise constant reconstruction of the
image by a statistical method. Many other approaches are
related to anisotropic diffusion [13] and nonlinear filtering
[14]. They aim at defining locally what the threshold between
diffusion and sharpening should be. Among them, we quote
the work of Chen [15], which uses a local discontinuity
measure to constrain the anisotropic diffusion, and the work
of Goshtasby and Satter [16], which smoothes images
according to adaptive windows depending on the local
image gradient structure.

Although very interesting for image processing, these
techniques cannot be used to process binary images or,
equivalently, segmented region boundaries and digital
contours. They indeed rely either on a local SNR analysis
of the image, sometimes with a user-given global SNR
parameter, or on gradient information. Since we have only
the discrete contour as input, both types of information are
not computable.

We propose here a new method for estimating locally if
the digital contour is damaged, what the amount of
perturbation is, and what the meaningful scales are at
which this part of the contour should be considered. Our
method is similar in spirit to multiscale analysis, but relies
on specific properties of digital contours. We indeed know
several asymptotic properties of perfect shape digitizations.
The main idea is to look for these asymptotic properties in
the multiresolution decomposition of the given contour. If
they are present, then the scale is meaningful; otherwise the
contour is still noisy at this scale and must be examined at a
coarser scale. Our approach is local, requires no parameter
tuning (except a given maximal observation scale), and is
easy to implement. Its output can be used in many
applications which require a global or local noise para-
meterization. Among them, we may quote tangent or
curvature estimators, dominant point, and corner detection.

In Section 2, we recall standard notions of discrete
geometry and known asymptotic results concerning max-
imal segments defined along the contour of shape digitiza-
tions. We show that the length of maximal segments over
scales can be used both to distinguish between flat and
curved parts of a contour and to detect noise. These
characteristics are to be found in the multiscale profile of each
point of the digital contour. We present how to compute

them from the subsamplings of the input contour. Section 3
gives several ways for interpreting the multiscale profile of a
point, depending on whether the user wishes to detect the
first local reliable scale (meaningful scale, noise level) or
the finest local reliable scale knowing a global coarse reliable
scale (standard scale). In Section 4, we validate our technique
on several datasets containing different shape geometries,
localized and/or variable noise, various resolutions. All
datasets are processed uniformly without any specific
parameterization. Noise and reliable scales are correctly
determined and quantified in all cases. Since the method is
based on the expected object geometry and not on a
particular noise model, the resulting noise detection appears
able to process various types of noise (even if it could exist
particular noise models not detected by our method). Our
noise quantifier is also shown to be globally consistent since
it keeps the same response along the digital shape contour for
a stationary noise whatever the chosen resolution. We
further demonstrate the potential of our approach in
Section 5, where we give four straightforward applications
of our noise detector. The first one is the simple adaptive
median filtering of the digital object according to its noise
level: Sharp features are preserved while noise is removed.
The second one is the local parameterization of a discrete
tangent estimator [17]. Tangent estimation is improved in
damaged regions while its precision is preserved in un-
damaged parts. The third one is the exploitation of detected
noise level for the parameterization of two classical contour
reconstruction algorithms [18], [19]. The fourth one is the
evaluation of the segmentation accuracy of the power
watershed algorithm [20]. Section 6 presents some perspec-
tives to this work. The presented noise detector is available
online at [21].

2 MULTISCALE PROPERTIES OF MAXIMAL

SEGMENTS

2.1 Definition and Known Asymptotic Results

Introduced in the 1970s, digital straightness has been an
active research subject through many years (e.g., [22], [23],
[24], and [25] for a recent review). In this paper, we consider
the following definition.

A standard Digital Straight Line (DSL) is some set
fðx; yÞ 2 ZZ2; � � ax� by < �þ jaj þ jbjg, where ða; b; �Þ are
also integers and gcdða; bÞ ¼ 1. The real lines of equation
ax� by ¼ � and ax� by ¼ �þ !� 1 are, respectively, the
lower and upper leaning lines (as illustrated in the next
floating figure). It is well known that a DSL is a 4-connected
simple path in the digital plane. A Digital Straight Segment
(DSS) is a 4-connected piece of DSL. The interpixel contour
of a simple digital shape is a 4-connected closed path
without self-intersections. Given such a 4-connected path C,
a maximal segment M is a subset of C that is a DSS and which
is no more a DSS when adding any other point of CnM.

The following floating figure illustrates a recognition
process of a maximal straight segment initiated from the
point P0 (like the recognition algorithm of Debled Rennes-
son and Reveilles [26]). From this point the sequence P1,
P�1, P2, P�2, P3, P�3, P4, P�4, P5, P�5, P�6, P�7, P�8, P�9 is
added alternately to the front and to the back of the current
segment. The final segment is maximal since the points P�10

and P6 cannot be added. The resulting recognition process
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Fig. 1. Top row: Partially damaged input image and results of
morphological operations. Images (a)-(d): Noise removal algorithm of
Rudin et al. [6]. The parameter � controlling the noise removal is global
to the image. Removing significant noise induces a general smoothing.
Our noise detection algorithm (bottom, second from right) could provide
interesting information to such algorithms. An adaptive median filter
using this information (see Section 5) creates the image at bottom right.



gives also the DSS characteristics ða; b; �Þ ¼ ð2; 5; 0Þ and its
discrete length L ¼ 14 which is simply defined as its
number of pixels minus one.

A discrete contour point can be covered by several
maximal DSS. For instance, the point P0 of Fig. 2 is covered
by four DSS (a)-(d). Note that the set of all maximal DSS can
be computed in linear time according to the contour size
[17]. Such a detection can be done by removing points from
the back of the DSS and by adding new points to the front.
For instance, from the DSS (a) of Fig. 2, the DSS (b) is
obtained by removing the point P�6, P�5, P�4 and by adding
P3, P4, and P5. In the following, we will denote by Lj the
length of the jth DSS covering a point P . As an example, the
notation L3 will denote the length of the third DSS which
cover P0 on Fig. 2c.

We recall some asymptotic results related to maximal
segments that lie on the boundary of some shape X
digitized with step h. The digitization process is DighðXÞ ¼
X \ hZZ� hZZ (Gauss digitization [27]). First, we assume the
shape has smooth C3-boundary and is strictly convex (no
flat zones, no inflexion point). Lachaud [28, Theorem 5.26]
states that the smallest discrete length—the number of
pixels minus one—of the maximal segments on the
boundary of DighðXÞ is some �ð1=h1=3Þ. The longest discrete
length of the maximal segments on the boundary of DighðXÞ
is some Oð1=h1=2Þ function ([17, Lemma 15]). Fig. 3 presents
experimental measures of the DSS length obtained on the
digitizations of a circle. The discrete minimal, maximal, and
average length fit the theoretical behavior defined from the
previous theorem well.

Second, we observe maximal segments along the
digitization of a flat zone of a shape. Since digital straight
segments are digitization of straight line segments, there is
at least one maximal segment that covers the straight line. It
means that the discrete length of the longest maximal
segment is �ð1=hÞ.

As a corollary to the previous properties, by considering
not only strictly concave or convex shape we obtain:

Corollary 1. Let S be a simply connected shape in R2 with a
piecewise C3 boundary. Let P be a point of the boundary @S of
S. Consider now an open connected neighborhood U of P on

@S. Let ðLhj Þ be the discrete lengths of the maximal segments
covering P along the boundary of DighðSÞ. Then, if U is
strictly convex or concave, then

�ð1=h1=3Þ � Lhj � Oð1=h1=2Þ: ð1Þ

U has null curvature everywhere, then

�ð1=hÞ � Lhj � Oð1=hÞ: ð2Þ

The first inequality expresses the asymptotic behavior of
the length of maximal segments in smooth curved parts of a
shape boundary. The second one gives the analog properties
in flat parts of a shape boundary.

2.2 From Asymptotic to Scale Analysis by
Subsampling

In the context of image analysis and pattern recognition, we
do not have access to asymptotic digitizations of shapes: We
are not able to get finer and finer versions of the object. At first
glance, it could mean that asymptotic properties are not
useful to analyze shape boundaries. This is not true. We can
use asymptotic properties in a reverse manner. We consider
that our digital object D is the digitization of some euclidean
shape X at a grid step h, choosing, for instance, the Gauss
digitization again. We then subsample the digital object D
with covering “pixels” of increasing sizes i� i, for i ¼
2; 3; . . . ; n. The subsampling process �i will be described in
Section 2.3. The family D of digital objects �nðDÞ; . . . ;
�2ðDÞ; D is an approximation of a sequence of finer and finer
digitized versions of X, namely, the family X : DignhðXÞ; . . . ;
Dig2hðXÞ;DighðXÞ. Corollary 1 holds for the latter family X .
Although this corollary does not formally hold for the
family D, a similar behavior is observed in practice (see, for
instance, the plots of points P1 and P 01 from Figs. 5b and 5d or
the complementary experiments from the annex, part A [29]).

When looking at lengths of maximal segments around
some point P of the boundary of D, we should thus observe
a decreasing sequence of lengths for the increasing
sequence of digitization grid steps hi ¼ ih, whose slope is
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Fig. 2. Illustration of the set of all maximal DSS covering a discrete
point P0 with discrete lengths L equals, respectively, to 8, 8, 8, and 9.

Fig. 3. Illustration of the asymptotic behavior of the discrete length of
maximal discrete straight segment on a circle of radius 1. The abscissa
represents the inverse of the digitization step h. The upper and lower
bound from (1) are plotted as a reference for illustration with chosen
values of k and l.



related to the fact that P was in a flat or curved region.
More precisely, letting ðLhij Þj¼1::li

be the discrete lengths of
the maximal segments along the boundary of �iðDÞ and
covering P , we can expect:

. If P is in a curved convex or concave zone, then the
lengths Lhij follow (1).

. If P is in a flat zone, then the lengths Lhij follow (2).

The asymptotic bounds of these equations suggest:

Property 1 (Multiscale). The plots of the lengths Lhij in log-scale
should be approximately affine with negative slopes as specified
below:

The plot is only approximately affine since the preceding
properties are asymptotic. Given an object at a finite
resolution, subsampling induces length variations that only
approximately follow the asymptotic behavior. Arithmetic
artifacts also play a role in this. It is, however, clear that the
approximation gets better when the initial shape is digitized
with a finer resolution.

We can make several remarks about the preceding result.
First, it allows us to distinguish between flat parts and
curved parts of an object boundary, provided the object was
digitized with a reasonable precision. This distinction relies
only on the classification of the plot slope between
½�1;�1=2½ and ½� 1

2 ;� 1
3�. Second, the preceding approach

is not valid on (around) points that are 1) a transition
between a flat and a curved part, 2) corner points. Third,
this technique assumes smooth objects with perfect digiti-
zation: If the digital contour has been damaged by noise or
digitization artifacts, these characterizations do not hold.

Although the two last remarks seem problematic for
analyzing shapes, we will use them to locally detect the
amount of noise and to extract local meaningful scales.

2.3 Subsampling a Digital Contour

Our multiscale analysis of digital contours requires several
subsampling computations of the initial digital shape. The
subsampling as selected in our approach is not spatial but
operates along the digital contour [30]. The output sub-
sampled contour is denoted by �x0;y0

i ðCÞ, where x0 and y0 is
the shift needed for the subsampling (with 0 � x0; y0 < i).
The index correspondence between points along the two
contours is computed during the subsampling. Along with
�x0;y0

i ðCÞ, there is thus a surjective map fx0;y0

i which
associates any point P in C to its image point in the
subsampled contour �x0;y0

i ðCÞ. Several subsampled contours
are illustrated on Figs. 4a, 4b, and 4c and the map f0;0

3 is
shown in Fig. 4d. This subsampling similar to the common
spatial one, can be done either locally around the point of
interest or globally for the whole contour.

2.4 Local Geometric Evaluation with Multiscale
Criterion

We are now in a position to analyze the local geometry of
some point P on a digital contour C. For resolution i and a

shift ðx0; y0Þ, we compute the discrete lengths Lhi;x0;y0

j of the
maximal segments of �x0;y0

i ðCÞ containing fx0;y0

i ðP Þ. To take
into account the possible digitization artifacts and approx-
imations, we average these lengths as

L
hi ¼ 1

i2

X
0�x0<i;0�y0<i

1

lx0;y0

i

X
j

Lhi;x0;y0

j ;

where lx0;y0

i represents the number of maximal segments
containing fx0;y0

i ðP Þ. As previously described in Section 2.1,
all the maximal segments of �x0;y0

i can be computed in linear
time with the number of points [17]. Fig. 4 illustrates for a
point P the cover of maximal DSS obtained at several scales
with shift values ðx0; y0Þ ¼ ð0; 0Þ.

The multiscale profile PnðP Þ of a point P on the boundary

of a digital object D is the sequence of samples ðlogðiÞ;
logðLhiÞi¼1::nÞ. According to Property 1, these samples should

be correctly approached with an affine model. Several

examples of multiscale profiles are illustrated in Figs. 5b

and 5d. We thus define the ideal multiscale criterion �nðP Þ of a

point P on the boundary of a digital object D as the slope

coefficient of the simple linear regression of PnðP Þ (in the

order regressor, regressand). An example of ideal multiscale

criterion along a digital spiral is illustrated on Figs. 5e and 5f.
The slope defined by the ideal multiscale criteria �nðP Þ

appears useful to detect the flat or concave/convex contour
parts. In fact, Property 1 indicates that �nðP Þ should be
around �1 if P is in a flat zone, whereas it should be within
½�1=2;�1=3� if P is in a strictly convex or concave zone. A
complementary study [31] and others experiments [30] have
shown that this distinction can be reasonably performed by
using a threshold (denoted as tf=c) set around to �0:52.

3 MULTISCALE PROFILE ANALYSIS

There are several ways to analyze the resulting multiscale
profile defined in the previous section. The first one is to
detect the first local scale for which the contour part can be
considered as meaningful: It naturally induces a noise level
definition. The second one is to start from a global coarse
scale and to detect the finest reliable scale (standard scale).
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Fig. 4. Illustration of the set of maximal segments covering a point P at
different scales (a)-(c). Lsmean gives the mean discrete length of the DSS
covering P at scale s. (d) shows the function (represented by lines)
associating each pixel P of C to the point �0;0

3 ðP Þ.



3.1 Meaningful Scales and Noise Detection

The multiscale profile can be used to detect noisy digital
contours. Indeed, if the multiscale profile of some point P is
not some approximation of an affine map with negative
slope, it means that locally around P the shape geometry is
neither a flat or curved zone. We display in Figs. 5a and 5b
the multiscale profile of a point P1 located on a perfectly
digitized curved zone and the multiscale profiles of the
points P2 and P3 located in noisy zones. In the former
profile, the decreasing affine relation is immediately visible.
In the latter profiles, it is somewhat randomly increasing for
fine resolutions and then follows an expected decreasing
affine profile after a given scale. A similar behavior is
observable for the multiscale profiles on the pentagon shape
with similar noisy regions. The only difference is the slope
of the affine relation of the profiles (slopes near � 1

3 for
the plots of Fig. 5b and near �1 for the plots of Fig. 5d).

We, therefore, introduce a noise threshold tm to discrimi-

nate between a curved zone and a noisy zone. From this

parameter a meaningful scale of a multiscale profile ðXi;

YiÞ1�i�n is then defined as a pair ði1; i2Þ, 1 � i1 < i2 � n,

such that for all i, i1 � i < i2, Yiþ1�Yi
Xiþ1�Xi

� tm, and the

preceding property is not true for i1 � 1 and i2. According

to the analysis and experiments of [30] it appears that the

threshold tm ¼ 0 gives locally precise noise detection both

on curved or flat zones and near corners. Note that setting

parameter tm between �1=3 and 1=3 only slightly changes

the noise detection, as shown in part B of the annex [29].
If ði1; i2Þ is a meaningful scale of the profile PnðP Þ, the

ði1; i2Þ-multiscale criterion �i1;i2ðP Þ of point P is then the
slope coefficient of the simple linear regression of PnðP Þ
restricted to its samples from i1 to i2.

Obviously, meaningful scales of PnðP Þ do not overlap
and are thus naturally ordered. If the first meaningful scale

of PnðP Þ is ðk1; k2Þ, then the integer k1 � 1 is called the noise

level at point P and we denote it by �ðP Þ.
We will show in the experiment section that both

definitions of meaningful scales and noise level have a clear

intuitive interpretation. They determine precisely where the

contour is perturbed and how it should be interpreted to be

meaningful.

3.2 Standard Scale

In presence of a large amount of noise (or for the special

case of fractal shapes) the first meaningful scale is not

always relevant compared to the global shape. For example,

if we consider the shape of Fig. 6a we can see that the first

meaningful scale of the point represented by a cross

indicates a zero noise level while the noise is well visible

from a global point of view: This phenomenon appears in

places where the noise is so important that its geometry

becomes pertinent at small scales. In order to detect the

global shape scale we propose another strategy by defining

the standard scale. This strategy is top-down and assumes that
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Fig. 6. Illustration of standard scale on a noisy contour. The standard
scale of the point represented by a cross is equal to ð8; 30Þ.

Fig. 5. Examples of multiscale profiles (a)-(d) and illustration of the ideal multiscale criterion �nðP Þ on a spiral (e) and (f). (a) and (b) show examples
of multiscale profiles P15ðP Þ on ellipse: P1 in a curved zone, P2 in a slightly perturbed curved zone, P3 in a strongly perturbed curved zone. Gaussian
noise (source image illustrated in the background in light gray) was added on each area containing the point P1, P2, and P3 with, respectively, the
following standard deviation �1 ¼ 0, �2 ¼ 75, and �3 ¼ 175 . The same experiment is applied on the polygon (c) and (d) with the points P 01, P 02, and P 03.



the parameter n gives a coarse scale at which the whole
shape is relevant.

This notion is defined from the decomposition of the
multiscale profile ðXi; YiÞ1�i�n into a sequence Sk of k pairs
ði1; i2Þ; ði2; i3Þ; . . . ; ðik; ikþ1Þ, 1 � ik < n and ikþ1 ¼ n, each of
them corresponding to the linear regression computed by
starting from highest index ijþ1 to ij, 1 � j � k, and which is
false for ij � 1. The linear regression model was used with a
confidence rate set empirically to 70 percent after experi-
ments on various contours. The slope of the linear
regression between ij and ijþ1 is denoted by �ij . From this
profile decomposition the standard scale is defined as the
first interval ðil; imÞ, 1 � l < m � kþ 1, computed starting
from scale n such that for all p, l � p < m, �iP < 0, and such
that �il�1

� 0 or il ¼ 1. The integer il defines the standard
scale level of the point P and is denoted by �ðP Þ.

Fig. 6 illustrates the standard scale obtained on a noisy
contour point. The point on Fig. 6a has zero-level noise
according to its meaningful scale, while it presents a large
noise level of 7 according to its standard scale equal to ð8; 30Þ.

4 EXPERIMENTAL VALIDATION

4.1 Noise Detection

A robust noise detector should not detect noise on perfectly
digitized data and should not be sensitive to the object initial
resolution. To experiment with these properties, different
shapes have been generated with a manual addition of noise
(Gaussian or manually added by edition) on some specific
areas (see Fig. 7). Note that for certain areas (on the bottom
left of the shape) only one or three pixels was changed
(highlighted in red). For each pixel P of the contour, the

result of the noise detection is illustrated by drawing a box
of size �ðP Þ þ 1, i.e., its first meaningful scale.

The obtained noise detection displayed on Figs. 7d, 7e,
and 7f) shows good precision. Even with low resolution
shapes and with a one pixel change, the noise is detected
well. Only a few false positive noise detections can be seen
on some small areas on the flower (near corners): However,
these errors are limited to one noise level. Note that for all of
these experiments no parameter was changed for the
detection. The variable tm associated to the noise threshold
was set to 0 for all the experiments, as suggested in
Section 3.1. The maximal resolution n used in the definition
of the multiscale profile PnðP Þ only has an influence on the
maximum scale of the detected noise. Indeed, for example,
the use of the minimal value of n ¼ 2 induces a noise
detection only at scales 1 and 2. This value was set to 15 in all
the presented experiments.

4.2 Global Noise Detection on Several Grid Sizes

The behavior of noise detection with respect to different
object sizes or samplings was analyzed by generating noisy
shapes with several grid sizes. We used a noise model
defined by a power law similar to the noise model proposed
by Kanungo [32]. The probability Pd of changing a pixel
located at a distance d from the shape boundary is defined
as Pd ¼ a

bd
. The parameters were set in order to take into

account the grid size s, a ¼ 1
2s , and b ¼ 2. The generated

noisy shapes are illustrated in Figs. 8a, 8b, 8c, and 8d. The
resulting noise level estimation shows a mean value
approximately near size 5 (according to an initial grid size
s equals to one) for the two types of shapes (circle and
polygon) and for all grid sizes (graphics (e) and (f) of Fig. 8).
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Fig. 7. Noise detection on flower-like and polygonal shapes defined with several grid sizes (s). Noisy areas are highlighted by red boxes (images (a)-
(c)) and were obtained after adding locally Gaussian noise or by manually editing some single pixel values (b) and (c). The areas outside boxes are
not changed from the initial reference shape. The resulting noise detection is shown in (d)-(f) by displaying for each pixel P a centered box of size
�ðP Þ þ 1.



This demonstrates the ability of the proposed approach to
automatically detect the real noise scale, independently
from the object sampling.

4.3 Detection of Flat and Curved Contour Areas

As described in the previous section, the analysis of the
multiscale profile PnðP Þ can discriminate the curved and
flat areas of the contour. In order to take into account only
the significant part of the profile of a point P , we use the
ði1; i2Þ-multiscale criterion (�i1;i2ðP Þ) which defines the slope
of the profile only from the meaningful scale ði1; i2Þ. From
this value, the decision curved/flat relies on a constant
threshold value tf=c, which is set to �0:52 to maximize the
good detection as suggested in Section 2.4.

The detection experiment was conducted on both perfect
and noisy shapes with exactly the same parameters.
Figs. 9a, 9b, and 9c shows the results obtained on perfectly
digitized shapes composed of various curved and flat parts.
The detection is accurate everywhere except on a few small
areas (Fig. 9b), which are not detected as curve in some
parts of the spiral (related to octant changes). On the
damaged shapes Figs. 9e-9g, the detection is always fine
and looks insensitive to the different noise intensities.

4.4 Experiments on Real Images

Our method was applied on real images with unchanged
parameters (Fig. 10). Contours were defined by tracking the
border of the regions obtained by thresholding the grayscale
image. The image of Fig. 10a was directly extracted without
subsampling from a digital camera picture obtained at
resolution 4;000� 2;672 with a sensibility of 250 ISO. As for
the previous experiments, the detected noise level K of a

point P is illustrated by drawing a box of size K centered on
each point P (Figs. 10b-10d). These results are comparable to
the ones obtained on synthetic images. In the same way, the
curved part detection was performed on the shapes of
Fig. 10d. As previously, the main curved parts of the
characters are well detected (represented by large blue
(dark) pixels in Fig. 10e). Other wxperiments on contours
extracted from real images (Figs. 9d and 9h) also show good
detections.

By considering the global contour of Fig. 10b one could

expect a noise level at a greater scale than the one obtained

with the meaningful scale detection. As suggested in

Section 3.2 we instead apply the standard scale detection.

Fig. 11a shows that the top-down strategy of the standard

scale is a better choice in this case and Fig. 11b gives the

reconstructed digital contour obtained from the standard

scale measures (see also Section 5.1).

4.5 Meaningful Level Set

Experiments on grayscale image can also be done by

extracting the digital contours from level sets defined by

successive thresholds of the image gray levels (and

by using a border tracking algorithm on the thresholded

connected compoments). Fig. 12b illustrates the 50,692 con-

tours obtained with a threshold step equals to 10. The

meaningful contour parts are defined as the set of points P

for which the first meaningful scale �ðP Þ is one and such

that P is not included in the neighorhood of size �ðQÞ > 1

of another contour point Q. More precisely, if we denote

by Si;j the sequence of points of the contour C going
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Fig. 8. Global noise detection on several grid sizes s. Shapes (a)-(d) were obtained with the Kanungo noise model [32] defined on each grid size s
(i.e., the amount of noise is independent of the sampling resolution). Plots (e) and (f) show the noise level estimation obtained on a pentagon (e) and
on a circle (f) of radius 120 with a sampling grid size s varying from 1 to 5.



increasingly from point Pminði;jÞ to Pmaxði;jÞ included, its

meaningful parts are defined as the set fP 2 CnffP 2
Cj�ðP Þ > 1g [ fPi 2 Cj9kj8Pl 2 Sk;i; �ðPkÞ � kPkPlkggg. The

resulting meaningful contours parts are well visible on

Fig. 12c while the flat meaningful parts are also well

detected on Fig. 12d.
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Fig. 10. Noise (b)-(d) and curved parts (e) detection applied on real text photography (a). The contours of the characters were extracted by
thresholding the gray level image and by tracking the resulting connected component border. Noise is represented by light blue boxes (of size
�ðP Þ þ 1) in images (b)-(d), while curved parts are highlighted with large dark blue boxes in image (e). The noise partition �ðXÞ� gives, for each shape
X, the percentage ci of points P having for noise level �ðP Þ ¼ i, i.e., �ðXÞ� ¼ fc0; c1; . . . ; ci; . . . ; ckg.

Fig. 9. Detection of flat/curved areas on various shapes using the meaningful scales information. The large blue pixels (in dark) represent the
detected curved areas. Images (e)-(g) are the noisy version of the shapes represented in images (a)-(c). The noisy versions of (a) and (b) were
obtained by applying noise specifically on the quadrants of the image as used for Figs. 5a and 5c) (illustrated in the background in light gray). (c) and
(g) are, respectively, the close-up view of the center area of images (b) and (f). (h) shows the results obtained on the segmentation of image (d). All
these results were obtained with a maximal allowed scale set to 25 (it was increased since the images have a larger resolution).



4.6 Timing Measures

To conclude the experimentation part, some runtime mea-
sures were performed on the contours of Fig. 10. The runtimes
listed in the following table were obtained on a 2.4 GHz Intel
Core Duo. The measures include the computation of all
subsampled contours �x0;y0

i ðCÞ and their maximal segments.

5 APPLICATIONS

5.1 Contour Smoothing

Meaningful scales can be used to locally remove noise
detected from the input shape. For instance, a simple
application is to define an adaptively sized mask in a
classical median filter [33]. To process such a filter, from a
contour pixel P , we assign a mask size K ¼ 2�ðP Þ þ 1 to all
points contained in the neighborhood of size K centered in
P . If several mask sizes are assigned to one pixel, the
maximal mask size is retained.

This meaningful scale median filter (MS median filter) has
been applied on the shapes of Figs. 7a, 7b, and 7c). The
noise present in the initial shapes was removed well, as can
been seen in Fig. 13. Moreover, the sharp features on the
polygonal shapes are well preserved. In order to quantify
the smoothing accuracy, we measure the number of pixels
which differ from the original ideal image (not the
corrupted input image). Table 1 shows the number of
incorrect pixels with a comparison between the MS median
filter and various constant size median filters. If we except
shape “FlowerR1,” the results obtained are always the best
with the MS median filter.

Other comparisons were performed on a noisy star shape
object. The initial star was damaged with various noise
levels at several locations (see Fig. 14a). Fig. 14b shows its
MS median filtering, which is very close to the original
shape. When using a constant size median filter (Fig. 14c),
small size masks are not enough to remove the noise, while
large size masks remove the noise but provoke strong
corner smoothing. Another denoising method specialized
for processing binary document images [34] was also used
for comparison (Fig. 14d). Similarly, a small value of the
fidelity denoising parameter (�) shows that noise is not

removed everywhere and a larger value implies shape and
corner enlargement.

The MS median filter was applied on the letters extracted
from Fig. 10 and on a star obtained after a small rotation. As
shown in Fig. 15, the parts with little noise are removed
well, while smooth parts and corners without noise are
preserved well. To extract the global contour of the noisy
contour (b) of Fig. 10 we define the standard scale median
filter by simply replacing the noise level �ðP Þ with the
standard scale level �ðP Þ. The resulting contour presented
in Fig. 11b shows the awaited contour representing the
global shape without the very small variations visible at
the finest scale.

A comparison between the MS median filter and the
Markov Random Field (MRF) segmentation is illustrated
in Fig. 16. Although the MRF is not limited to dealing
with two classes segmentation problem, even by selecting
a specific parameter 	, the result of the MS median filter
appears to fit the initial shape better. This filter can also
be applied directly on the gray level image with the same
isocontour. Such a restoration is illustrated in Fig. 17.
The adaptive quality is well visible on the right image of
the previous figure.

5.2 Geometric Analysis

Geometric estimators are generally sensitive to the amount of
noise that may perturb the digital contour. This sensitivity
can be reduced by choosing a scale parameter or by applying
global noise reduction. Since meaningful scales appear
useful in determining locally everywhere along the contour
what the first relevant scale is, we experiment with it through
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Fig. 11. Illustration of the standard scale levels � (a). For each pixel P of
the contour a centered box of size �ðP Þ is displayed. Reconstruction
from the standard scale median filter is displayed in (b).

Fig. 12. Application on 50,692 level set contours (b) of the photograph
of Valbone church (a). The contours were obtained after a threshold
step equal to 10 from the 256 initial levels. Resulting meaningful
coutours (c) and flat contour parts (d).



a digital tangent estimator based on maximal segments
called �-MST [17]. It has been shown to be one of the most
accurate estimators for perfect shape digitizations.

The �-MST estimator is based on the recognition of
maximal segments along some discrete contour C, whose
discrete points Ck are numbered consecutively. We denote
by MSi the maximal segments of the contour and by �i
the angle they form with the x-axis. Each maximal segment
MSi is a 4-connected sequence of points of C going
increasingly from point Cmi

to point Cni included. A pencil
of maximal segments around some point Ck is defined as
the set fMSi; Ck 2MSig and denoted by �ðkÞ. The eccen-
tricity eiðkÞ of a point Ck with respect to a maximal segment
MSi is its relative position between the extremities of MSi:

eiðkÞ ¼
kCk � Cmi

k1

Di
¼ k�mi

Di
; if MSi 2 �ðkÞ;

0; otherwise;

8<
:

with Di ¼ kCni � Cmi
k1:

ð3Þ

Given a point on a maximal segment, the closer its
eccentricity is to 1

2 the more centered it is.
The �-MST direction at point Ck is the weighted convex

combination of the directions of the covering maximal
segments:

�̂ðkÞ ¼
P

i2�ðkÞ �ðeiðkÞÞ�iP
i2�ðkÞ �ðeiðkÞÞ

;

where � is a mapping from ½0; 1� to IRþ with �ð0Þ ¼ �ð1Þ ¼ 0
and � > 0 elsewhere. We have chosen here a simple triangle
function with peak at 0.5, but other choices are possible.
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Fig. 14. Result of the adaptive median filter (b) defined with meaningful
scales obtained on a noisy star shape (a). The initial star shape is
represented in light gray. The images (c) and (d) show, respectively,
comparison with a constant size median filter and with the directional
denoising approach [34] (denoted as DD) with several values of fidelity
parameter �.

TABLE 1
Measures of Incorrect Pixels from MS Median Filter and

Comparisons with Median Filtering

The values represent the number of incorrect pixels between ideal
perfect images (flower, polygon, and star) and several median filtering of
these images corrupted with noise (some of them are illustrated in Figs.
7a, 7b and 7c, and Fig. 1.4). The first column represents the measures
obtained with the Meaningful Scale median filter.

Fig. 13. Results obtained from the meaningful scale median filter. The initial shapes are represented in light gray and the resulting contour is shown
in dark (blue color).



To exploit the meaningful scales in the tangent estimation
we simply assign to any pointCk the tangent computed from
the contour given at the associated meaningful scale
(i.e., computed from �0;0

�ðCkÞþ1ðCÞ). The �-MST estimation on
the flower and polygon shapes of Fig. 7 is displayed in
Figs. 18a, 18c, 18e, and 18f). Noisy parts are well identified
and at the same time relevant features are preserved. The
tangent estimation defined through the meaningful scales
gives robust estimations on noisy parts and keeps the finest
accuracy elsewhere Figs. 18b, 18d, 18g, and 18h. We also
compared the estimation obtained from meaningful scales
with the �-MST estimation computed at global scales 4 and
8. The noise disappears too; however, the smoothing effect is
well visible near sharp features Figs. 18g and 18h.

5.3 Polygonal Reconstruction

Another potential application of the meaningful scales can
be found in numerous polygonal reconstruction methods

for which a scale parameter needs to be set by the user. To

demonstrate this application we first consider the algorithm

proposed by Bhowmick and Bhattacharya [18], which uses

a scale parameter (
) to adjust the accuracy of the

reconstruction process (called ADSS). We applied this

algorithm by changing the scale parameter from 1 to 20

with noisy versions of the kangaroo shape illustrated in

Fig. 19. Two types of measure were performed on the initial

shape. The first one is the Hausdorff distance between the

resulting polygon and the digital source contour and the

second one is the error of the tangent vectors deducted from

the polygon to the ones estimated with the previous �-MST

estimator (see Figs. 19b and 19c)). The same procedure was

defined with the polygonalization method called Visual

Curvature (VC) [19] (Fig. 19d, 19e, and 19f), which is

defined from a given scale.
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Fig. 17. Local contour restoration with MS median filtering. Left: Original image with isocontour 140 drawn in black (the contour of Fig. 16b). Middle:
The same image after adaptive median filtering based on meaningful scale detection (Fig. 16c); isocontour 140 drawn in black. Right: Difference of
the two images with contrast enhanced.

Fig. 16. Comparison of MS median filtering with Markov Random Field segmentation in two classes. Top row: Image (b) gives the optimal Gaussian
mixture threshold of (a); image (c) displays the meaningful scale of the digital contour (b), while image (d) displays the induced MS median filtering.
Bottom row: Images (e)-(h) display the results of MRF segmentation in two classes, assuming each class follows a normal distribution. The parameter
	 indicates the balance between the fit to data and the consistency between neighbors. Mean and variance of classes were initialized with the optimal
Gaussian mixture threshold. The MRF was optimized with simulated annealing with initial temperature 10, which was stopped after 3,300 iterations.

Fig. 15. Application of the MS median filter on shapes obtained from nonperfect digitizations (a)-(d). Images (e)-(h) show the resulting shapes
obtained without the need to set any parameters.



As shown in Fig. 19, the use of the mean value of the
meaningful scale � represented by vertical lines in graphics
Figs. 19b, 19c, 19e, and 19f gives a Hausdorff error always
near the minimal values for each noisy shape. From the
point of view of the tangent estimation errors, the use of
the parameter 2� appears to ensure a quasi-minimal error.
The choice between � and 2� should be defined according to
the need of the application and a promising solution to
avoid this tradeoff should be to integrate the meaningful
scales directly in the polygonalization method.

5.4 Segmentation Evaluation and Improvement

Digital contours can result from a segmentation process
such as the watershed algorithms after a region boundary
tracking. The automatic evaluation of the amount of noise
can be significant to locally evaluate the quality of the

segmentation process. To illustrate this potential use, we
applied the meaningful scale detection on the result of
the recent approach called the power watershed [20] (Fig. 20).
The comparisons between the error made by the segmenta-
tion (areas highlighted in red in Figs. 20b and 20d) and the
noise detection (Fig. 20a and 20c) shows that this detection
can be useful to improve shape segmentation approaches.

6 CONCLUSION

The original and simple notion of meaningful scales
proposed in this paper offers new possibilities to auto-
matically detect what the local pertinent scales of a discrete
contour are. If a meaningful scale interval exists given a
maximal scale, it is possible to obtain geometric informa-
tion as the curvedness/flatness even on noisy contours.
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Fig. 18. Normal estimation using the �-MST estimator combined with meaningful scales. For each shape the estimation obtained at a single scale is
given for comparisons (a), (c), and (e)-(h).



Moreover it provides a tool for unsupervised noise
detection which allows us to locally detect the amount of
noise on fine or coarse resolution shapes. The direct
applications of this concept to contour denoising and

geometric estimation already demonstrate the potential of
the approach. In future work, we plan to adapt this concept
to the blurred segments primitive and to extend the
meaningful scales to 3D objects.
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Université Bordeaux 1, in French, 2006.

[29] B. Kerautret and J.-O. Lachaud, “Online Annex of Article:
Meaningful Scales Detection along Digital Contours for Unsuper-
vised Local Noise Estimation,” http://www.loria.fr/~kerautre/
annexMeaningfulScalesPAMI.pdf, Oct. 2011.

[30] B. Kerautret and J.-O. Lachaud, “Multi-Scale Analysis of Discrete
Contours for Unsupervised Noise Detection,” Proc. 13th Int’l
Workshop Combinatorial Image Analysis, pp. 187-200, 2009.

[31] F. de Vieilleville, J.-O. Lachaud, and F. Feschet, “Maximal Digital
Straight Segments and Convergence of Discrete Geometric
Estimators,” J. Math. Imaging Vision, vol. 27, no. 2, pp. 471-502,
Feb. 2007.

[32] T. Kanungo, “Document Degradation Models and a Methodology
for Degradation Model Validation,” PhD dissertation, Univ. of
Washington, 1996.

[33] A.C. Bovik, Handbook of Image and Video Processing. Academic
Press, 2005.

[34] T.V. Hoang, E.H. Barney Smith, and S. Tabbone, “Edge Noise
Removal in Bilevel Graphical Document Images Using Sparse
Representation,” Proc. IEEE 18th Int’l Conf. Image Processing, 2011.

Bertrand Kerautret received the PhD degree in
computer science from the Bordeaux I Univer-
sity, France, in 2004. Currently, he is working as
a professor assistant in computer science at
Nancy University (IUT of Saint Dié des Vosges,
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