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ABSTRACT
We present certificates for the positive semidefiniteness of
an n × n matrix A, whose entries are integers of binary
length log ‖A‖, that can be verified in O(n2+ǫ(log ‖A‖)1+ǫ)
binary operations for any ǫ > 0. The question arises in
Hilbert/Artin-based rational sum-of-squares certificates, i.e.,
proofs, for polynomial inequalities with rational coefficients.
We allow certificates that are validated by Monte Carlo ran-
domized algorithms, as in Rusins M. Freivalds’s famous 1979
quadratic time certification for the matrix product. Our cer-
tificates occupy O(n3+ǫ(log ‖A‖)1+ǫ) bits, from which the
verification algorithm randomly samples a quadratic amount.

In addition, we give certificates of the same space and ran-
domized validation time complexity for the Frobenius form
and the characteristic and minimal polynomials. For deter-
minant and rank we have certificates of essentially-quadratic
binary space and time complexity via Storjohann’s algo-
rithms.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms: theory, algorithms, verification

Keywords: randomization, probabilistic proof, matrix de-
terminant, matrix rank, Frobenius form, output validation

1. INTRODUCTION
For many unstructured and dense linear algebra prob-

lems concerning an n × n matrix, it is not known whether
there is an algorithm running in n2+o(1) time, in other words
essentially-linearly in the input size. Motivated by the aris-
ing theme of certified (“trustworthy,” “reliable”) computa-
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tion, in particular in numerical and hybrid symbolic numeric
computation and global optimization, it is worthwhile to
provide a-posteriori certificates that can be verified in time
n2+ǫ for any ǫ > 0; see [7, 9] and the references therein. In
particular the definition of what constitutes a certificate is
given at the end of [9]:

“A certificate for a problem that is given by in-
put/output specifications is an input-dependent
data structure and an algorithm that computes
from that input and its certificate the specified
output, and that has lower computational com-
plexity than any known algorithm that does the
same when only receiving the input. Correctness
of the data structure is not assumed but vali-
dated by the algorithm (adversary-verifier model).”

Certification itself is a challenging problem for integer
and rational matrices. Even the apparently straightforward
thought of certifying, for A ∈ Zn×n, the LU decomposition
A = LU , by presenting the factors L and U , is problem-
atic. Forming the product costs matrix multiplication time,
O(nω) with ω > 2.37. We accept probabilistic verification,
so one could consider forming the product (A − LU)v for a
random vector v ∈ Zn [2, 10]. In the algebraic model this
can be done in O(n2) time, linear in input size. However,
this is not at all the case in the bit model of computation
given a rational or integer matrix. For instance consider the
case of A ∈ Qn×n. The entries of L and U are ratios of
minors of A. Even when entries are integers having lengths
bounded by a constant and A has determinant 1, the size of
the LU decomposition is in general n3+o(1) and we know of
no certificate to verify it in n2+o(1) time, deterministically
or probabilistically. Here and in the following the “no(1)”
corresponds to factors that are asymptotically bounded by
a power of log(n), i.e., “nη+o(1)” corresponds to a “soft big-

Oh” of nη. We shall refer to the complexity (log ‖A‖)1+o(1)

as essentially-linear (in log ‖A‖), the complexity n2+o(1) as
essentially-quadratic (in n), etc.

However, LU decomposition is primarily a means to an
end, and one can in fact use LU decomposition in n3+o(1)

space, n2+o(1) time, probabilistic certification, as we will
show.

By probabilistic certification we mean a Monte Carlo ran-
domized verification process (an algorithm whose input con-
sists of the problem instance, the solution, and a certificate
data structure). The result is “true” if the solution is veri-
fied correct with the aid of the certificate. The probability
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of “true” output when the solution and/or certificate are in-
correct must be at most 50%. The probability of incorrect
verification can then be made arbitrarily small through rep-
etition. For instance, twenty independent repetitions of a
1/2 probability verification makes the probability of error
less than one part in a million.

In the next section we discuss the certification framework
and give some problems that can be probabilistically cer-
tified in essentially-quadratic time and space. Section 3
concerns LU decomposition based certifications of rank and
determinant which require essentially-quadratic time and
essentially-cubic space. Then Section 4 presents certificates
in that same time/space complexity for the invariants of
matrix similarity: minimal polynomial, characteristic poly-
nomial, and Frobenius form. This leads to certification of
our original motivating problem: positive definiteness and
semidefiniteness. Finally Section 5 discusses certifications
based on algorithms by Kaltofen and Villard [8] and by
Storjohann [15, 16]. These certificates require smaller space
asymptotically than the essentially-cubic space certificates
of Section 4, but the “o(1)” hides larger factors.

2. PRELIMINARIES AND n2+o(1) SPACE
AND TIME CERTIFICATES

The sizes of entries, of the determinant, and indeed of
all the minor determinants arise in in the analysis of our
certificates. Let ‖A‖ = ‖A‖∞,1 = maxi,j |ai,j |, and let HA =
max{|M | such that M is a minor of A}.

Results in this paper are a function of the matrix dimen-
sion and of the minors bound HA. The next lemma bounds
HA in terms of the entry size.

Lemma 1. If A is an m×n integer matrix, and k = min(m,

n), Then HA ≤ (k1/2‖A‖)k.

Note that log HA is essentially-linear in k when ‖A‖ is
polynomial in k.

Proof. One form of Hadamard determinant bound of
an i × i minor is (i1/2‖A‖)i, with equality when the matrix
rows or columns are pairwise orthogonal and each entry has
absolute value ‖A‖. Our bound expression is an increasing
function of i, so bounds all minors when k = min(m, n).

The magnitudes of the scalars used in our certificates are
essentially-linear in log HA and the time to do basic arith-
metic operations on values bounded by log HA is essentially-
linear in loglogHA, using fast integer arithmetic. In the
remainder of the paper, for simplicity, we will state results
in terms of matrix dimension and log ‖A‖, making use of
Lemma 1. Unless subscripted by the base, all log’s are to
base 2.

Lemma 2. Zero equivalence of a matrix expression over
Zn×n

p may be verified probabilistically in time proportional
to the cost of multiplying the expression times a vector and
with probability of error 1/p [2, Freivalds].

If the matrix expression involves matrix multiplications
then expanding the expression may well cost more than
matrix-times-vector product. For example when the ma-
trix order is n and the expression is A−LU , expanding E =
A−LU would cost O(nω) with ω > 2.37, matrix multiplica-
tion time, but the matrix-vector product Ev = Av −L(Uv)

costs 3 matrix-times-vector products and a vector subtrac-
tion, so is O(n2) arithmetic operations.

Proof. The verification is to apply the expression E to
a random vector in Zn

p . If E is nonzero, its nullspace is at
most an n − 1 dimensional subspace of Zn

p , containing pn−1

of the pn possible vectors. Hence the probability of error is
bounded by 1/p.

Kimbrel and Sinha [10] suggest for p ≥ 2n to use the
vector v = [1, r, r2, . . . , rn−1]T for a random residue r with
0 ≤ r ≤ 2n − 1. At least half of the vectors must lead to a
non-zero result, since otherwise E times a non-singular Van-
dermonde matrix would be the zero matrix. Their approach
requires only log(n) random bits.

Theorem 1. Let A ∈ Zn×n and b ∈ Zn. The following

problems have n2+o(1)(log ‖[A, b]‖)o(1) space and n2+o(1) ×

(log ‖[A, b]‖)o(1) time probabilistic certificates.

1. Nonsingularity of A,

2. Singularity of A,

3. Consistency of rational linear system Ax = b (and the
certificate is a solution to the system),

4. Inconsistency of rational linear system Ax = b.

Proof. For nonsingularity the certificate is (p, B), for a
prime p and matrix B = A−1 mod p. If A is singular it
is not invertible modulo any prime, so one prime’s testi-
mony suffices. Verification is zero equivalence of AB − I
mod p. Because at most n ((log n)/2 + log ‖A‖) primes di-
vide det(A), a prime of length

log
`

n ((log n)/2 + log ‖A‖)
´

may be chosen, ensuring that the size of the certificate p, B

is n2+o(1)(log ‖A‖)o(1) and the cost of the zero equivalence

check is n2+o(1)(log ‖A‖)o(1) time.
For singularity the certificate is a sequence of

2n ((log n)/2 + log ‖A‖)

primes pi and nonzero vectors vi such that Avi = 0 mod pi.
The certificate verification is to choose index i at random
and check that Avi = 0 mod pi. At most n ((log n)/2 +
log ‖A‖) primes divide the determinant of A and could pro-
vide a misleading nullspace vector. So at least half of the
primes can provide a nullspace vector only if A is singular.
Thus with probability 1/2 the certificate is verified. The first
2n ((log n)/2 + log ‖A‖) primes can be used, These primes
are all of bit length essentially-constant in log n and log ‖A‖,
since the k-th prime is ≤ k(loge(k) + logloge(k) − 1/2) for
k ≥ 20 [13].

For consistency the certificate is an integer vector x and
integer δ 6= 0 such that Ax = δb and δ and the numerators in
x are bounded in absolute value by nn/2‖(A, b)‖n. Verifica-
tion is zero equivalence of Ax−δb modulo a randomly chosen
prime. It is easy to see, by Cramer’s rule, that a suitably
small rational solution exists when A is square and nonsin-
gular, the entries of x are minors of (A, b) and δ = det(A).
Otherwise, for r = rank(A), rows and columns of A may
be permuted so that the leading principal r × r minor is
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nonsingular. Thus without loss of generality, A and b have
conformally the forms

A =

»

B C
D DB−1C

–

, b =

»

b1

b2

–

,

where B is r × r nonsingular. Consistency requires b2 =
DB−1b1. Let x1 be solution to Bx1 = δb1, where δ =
det(B). Then x = x1 padded with zeroes is a solution to
Ax = δb. The bit lengths of x is as required since those of
x1 and δ are. so that again the bit lengths are as required.

How many primes can testify that Ax = δb for a incor-
rect solution x, δ? Let x̂, δ̂ be a true solution. Because
nn/2‖(A, b)‖n bounds the entries of the true and purported
solutions, k = 1 + n ((log n)/2 + log ‖[A, b]‖) is a bound for

bit lengths of the differences x−x̂, δ−δ̂ and at most k primes
can falsely testify by being divisors of all n + 1 differences.
For verification we choose a prime p uniformly at random
from among the first 3k + 3 primes so that the probability
of a bad prime is at most 1/3. Then we reduce x and δ

modulo p in n2+o(1)(log ‖[A, b]‖)o(1) time and do two trials
of zero equivalence of Ax − δb mod p so that zero equiv-
alence is assured with probability of error 1/4 and overall
error probability bounded by 1/3 + 2/3 × 1/4 = 1/2.

For inconsistency the certificate, based on [3], is a se-
quence of 2n ((log n)/2 + log ‖[A, b]‖) primes pi and vectors
vi, such that vT

i A = 0 mod pi, but vT
i b 6= 0 mod pi, which

contradicts vT
i Ax = vT

i b (over the integers) for any x. Ver-
ification consists in randomly choosing one pair pi, vi and
checking the two conditions modulo pi. The system is in-
consistent if and only if the rank of [A, b] is greater than
r = rank(A). The only way a consistent system can be
made to look inconsistent in a modular image is to have a
reduced rank of A in the modular image. Let M be a non-
singular r × r minor of A. If p does not divide det(M) ≤ H
then p cannot falsely testify to inconsistency. Thus at most
n ((log n)/2 + log ‖[A, b]‖) primes must be avoided and the
primes in the certificate can be taken small (among the first
3n ((log n)/2 + log ‖[A, b]‖) primes) to achieve the stated
space and time bounds.

3. CERTIFICATES BASED ON
LU DECOMPOSITION

Definition 1. An m×n matrix A has an LU decomposition
of rank r if A = LU , L is a m × r unit lower triangular
matrix, and U is a r×n upper triangular matrix with nonzero
diagonal entries.

LU decomposition is a common tool used in the solution
of several matrix problems including rank, determinant, and
system solving. The entries in the LU decomposition are
ratios of minors of A. Thus if A is an n × n matrix with a
minors bound of bit length h = n1+o(1), then the size of the
LU decomposition is n3+o(1) (n2 nonzero entries of length

n1+o(1)). This cubic size makes it difficult to certify LU
decompositions over the integers.

Despite the fact that we do not know, for integer matrix
A, how to certify A = LU in n2+o(1) time, the LU decompo-
sition modulo a prime is useful for several certificates. This
leads us to the definition of an LU residue system.

For given m× n matrix A, a LU residue system of rank r
and length k is a nonempty sequence of k distinct triples

(p1, L1, U1), . . . , (pk, Lk, Uk) where (1) pi is a prime, and
pi > pi−1 for i > 1, (2) Li, Ui is a LU decomposition of
rank r for A modulo pi, and (3) the entries of Ui and Li

are normalized modulo pi (0 ≤ x < pi for each entry). The
primary property of a LU residue system is that A = LiUi

mod pi. The rest of the conditions are secondary properties
(that the pi are prime and distinct, that each decomposi-
tion is of rank r and that Ui, Li of the stated triangular and
full rank forms). The secondary properties are either in-
herent in the presentation of the LU residue system or may

be checked in rk (max log pi)
1+o(1) time, which is n2+o(1),

when k = n1+o(1) and the primes are bounded in length by

(loglog ‖A‖)1+o(1). In the sequel we will implicitly assume
any verification includes checking the secondary properties.

The next lemma states that LU residue systems cannot
overstate matrix rank and can understate it only if the residue
system is short.

Lemma 3. Let A have rank r and a LU residue system of
rank s and let h = n ((log n)/2+ log ‖A‖), which bounds the
bit length of any minor of A in absolute value. Then

1. s ≤ r, and

2. if s < r, then the length of the LU residue system is
bounded by h.

Proof. First observe that the leading principal s× s mi-
nor of A is the product of the leading s × s minors of L
and U . By construction of the residue system, this minor
is nonzero modulo a prime, hence nonzero over the integers.
Thus s ≤ rank(A).

Second if A has rank r > s then some r × r minor of A is
nonzero. Only for primes p which divide this minor can A
have a rank s LU decomposition modulo p. The number of
such primes, thus the length of a rank s LU residue system,
is bounded by the bit length of the minor which is at most
h.

A matrix A has an LU decomposition of rank r if and
only if A is of rank r and has generic rank profile (leading
principal minors are nonzero up to the rank). If A does
not have generic rank profile, then there are permutation
matrices P and Q such that PAQ does have generic rank
profile. Define a general LU residue system for A to be a
pair of permutations P, Q together with a LU residue system
for PAQ. We use this first as a certificate for matrix rank.

Theorem 2. Let A ∈ Zn×n and let h = n ((log n)/2 +
log ‖A‖), which bounds the bit length of any minor of A
in absolute value. There exists a general LU residue sys-

tem of length 3h and with primes of bit length (log h)1+o(1)

which is a certificate for rank(A). The certificate occupies

n3+o(1)(log ‖A‖)1+o(1) space and can be verified in n2+o(1) ×

(log ‖A‖)1+o(1) time.

Proof. Certificate verification consists in picking one of
the triples (p, L, U) and validating the decomposition PAQ =
LU mod p. By Lemma 3, a false certificate (wrong rank of
the residue system) can have at most h triples for which the
LU decomposition modulo p is valid. The probability of that
is thus bounded by 1/3. In the remaining cases, the proba-
bility of an erroneous verification of a bad LU decomposition
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is 1/p by Lemma 2. Then the probability of incorrectly ac-
cepting a bad certificate is less than 1/3 + (2/3)(1/p) ≤ 1/2
when p > 5.

The 3h primes in a good certificate may be chosen among
the first 4h + 3 primes (Just excluding 2,3,5, and those that
divide the largest determinantal divisor, i.e., the greatest
common divisor of the r × r minors, for matrix of rank r).

These primes are all of bit length (log h)1+o(1) since the m-
th prime is ≤ m(loge(m) + logloge(m) − 1/2) for m ≥ 20
[13].

Next we address determinant certification.

Theorem 3. Let A ∈ Zn×n and let h = n ((log n)/2 +
log ‖A‖), which bounds the bit length of any minor of A
in absolute value. There exists a certificate for the deter-
minant of A of form (det(A), C), where C is a general LU
residue system for A of length 3h + 3 with the primes in

C of length at most (log h)1+o(1). The certificate occupies

n3+o(1)(log ‖A‖)1+o(1) space and can be verified in n2+o(1) ×

(log ‖A‖)1+o(1) time.

Proof. Let d denote the purported determinant in the
certificate (d, C). If the rank of the residue system is less
than n, then d must be 0 and validation consists in checking
the rank as in the previous theorem. If the rank of the
residue system is n, chose a triple (p, L, U) and verify the
LU decomposition (zero equivalence of PAQ−LU) and also
verify that d =

Qn
i=1 Ui,i mod p. The probability of a bad

zero equivalence is 1/p.
Since d and the true determinant have bit length h, their

difference has bit length at most h + 1. Only primes that
divide this difference can pass the d =

Qn
i=1 Ui,i mod p for a

false d. Since at most h+1 such primes are in the certificate,
the probability of this is bounded by 1/3. Thus the overall
validation error probability is 1/p + ((p − 1)/p)(1/3) ≤ 1/2
for p ≥ 5.

The 3h + 3 primes in a good certificate may be chosen
among the first 4h + 5 primes. We exclude 2, 3 and those
that divide the determinant, so as to present a residue sys-
tem of full rank n. The selected primes are thus of bit length

(log h)1+o(1). For the certificate size and the verification run-
time, observe that reducing d modulo p and computing the

mod p determinant of U may be done in n1+o(1)(log h)1+o(1),
so the costs are dominated by the LU residue system and
are as in Theorem 2.

We remark that if H is any bound for the minors of A
with a fast verification, then log H may substitute for the
bit length bound

h = n ((log n)/2 + log ‖A‖)

that we have used. Then log H substitutes for a factor of

n1+o(1)(log ‖A‖)1+o(1) in our resource bounds. The bound
does have to be verified to ensure that the LU residue sys-
tems are long enough to defeat bad primes. An example
of a class of matrices with non-Hadamard minors bounds
verifiable in n2+o(1) time is the family of matrices with a
constant number of rows of entries having bit length essen-
tially n and with the remaining rows having entry lengths
essentially constant.

4. CERTIFICATES BASED ON
SIMILARITY

Definition 2. A square matrix is in Frobenius normal form
(rational canonical form) if it is the direct sum (block diago-
nal composition) of companion matrices companion(f1), . . .,
companion(fk) for monic polynomials f1(x), . . . , fk(x) such
that fi divides fi+1, for all i with 1 ≤ i ≤ k − 1.

Fact 1. A square matrix over a field is similar to one and
only one matrix in Frobenius normal form [11, Corollary 2,
p391, for example].

We use similarity to Frobenius form modulo primes in
the following certificates. For a matrix pair A, B ∈ Zn×n,
define a similarity residue system for B with respect to A
of length k to be a sequence of k tuples (p, S, T, B̄) with
distinct primes p, and matrices S, T, B̄ ∈ Zn×n

p such that
S is invertible with T ≡ S−1, B ≡ B̄, and A ≡ SB̄T (all
modulo p).

Theorem 4. Let A ∈ Zn×n. There exists a certificate for
the characteristic polynomial of A of the form (f, C), in
which f(x) is the characteristic polynomial of A and C is a
similarity residue system for the Frobenius normal form of
A of length 6hA +6, where hA = n (1 + (log n)/2+ log ‖A‖)
bounds the coefficient lengths in the characteristic polyno-
mial of A, and with the primes in C of bit length no(1) ×
(log ‖A‖)o(1). The residue system occupies

n3+o(1)(log ‖A‖)1+o(1)

bit space and can be verified in n2+o(1)(log ‖A‖)1+o(1) time.

Proof. Let c A(x) denote the characteristic polynomial
of A and let hA = n (1 + (log n)/2 + log ‖A‖). First we
bound the size of c A(x). The i-th coefficient is a sum of
the principal i × i minors of A. There are

`

n
i

´

such minors.
Thus, as the sum of less than 2n numbers of bit length at
most h = n ((log n)/2 + log ‖A‖), the coefficient bit length
is bounded by n + h and the n coefficients of c A(x) occupy
at most n2 +nh space. Better bounds are possible, see, e.g.,
[5]. If a polynomial f is offered that is not the characteristic
polynomial but has coefficients bounded in absolute value by
hA, then g(x) = f(x) − c A(x) has coefficients of bit length
1+hA. For a prime p to lie will require that g is mapped to
zero modulo p.

To verify that f(x) = c A(x), do the following.

1. Choose at random a tuple (p, S, T, B̄) in the similarity
residue system C. Verify the zero equivalence (Lemma
2) of ST − I and A − SB̄T (both modulo p) in O(n2)
time and with error probability bounded by 2/p (which
is less than 1/6 for p ≥ 13).

2. Verify (deterministically) that each fi divides the next.
Multiply together the polynomials of the companion
matrices comprising B, obtaining fp(x) =

Q

fi(x) mod
p, Since the Frobenius form is unique, the product is
necessarily the modulo p residue of c A(x). The prod-
uct can be computed using O(n2) arithmetic opera-

tions modulo p, and each division is degree(fi+1)
1+o(1)

arithmetic operations, so the divisibility checks in total

are in n2+o(1)(log p)1+o(1) as well.
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3. Verify (deterministically) that f(x) = fp(x) mod p.

Since the size of f is n2+o(1)(log ‖A‖)1+o(1), f can be

reduced modulo p in n2+o(1)(log ‖A‖)1+o(1) time.

Since each fp(x) is a modular residue of c A(x) the cer-
tificate must have f(x) = c A(x) mod p for each p in the
residue system. Also f(x) and c A(x) have coefficients of bit
length at most hA, so the bit length of the coefficients of
f(x) − c A(x) is bounded by k = 1 + hA. Thus this poly-
nomial is zero modulo at most k primes. The certificate
can successfully pass the verification with an incorrect pur-
ported characteristic polynomial only with probability at
most k/(6hA + 6) = 1/6.

Thus we may fail to detect a bad similarity with probabil-
ity 1/6. In the remaining 5/6 cases we could fail to detect a
bad determinant with probability 1/3, for overall probability
of failure bounded by 1/2.

The first 6hA primes larger than 11 can be used in the
certificate, ensuring that they have bit length essentially-
constant in n and (log ‖A‖).

The signature of matrix is the triple (n+, n0, n−) indicat-
ing the number of positive, zero, and negative eigenvalues,
respectively.

Corollary 1. Let A be an n × n symmetric matrix having
minors bound H of bit length log HA = n1+o(1). The signa-
ture of A can be verified in n2+o(1) binary operations with a
n3+o(1) bit space characteristic polynomial certificate. Thus
the same certificate serves for positive or negative definite-
ness or semidefiniteness.

Proof. Verify the characteristic polynomial c A(x) with
the certificate of Theorem 4. Since the matrix is symmetric,
all eigenvalues are real. The number of zero eigenvalues is
the largest n0 such that xn0 divides c A(x). For instance, if A
has all its eigenvalues α ≥ 0, i.e., if A is positive semidefinite,
then the polynomial

Y

α>0

(x + α) = (−1)n−n0
c A(−x)

(−x)n0

(1)

has all positive coefficients. The condition is obviously suf-
ficient, since a polynomial (1) with all positive coefficients
cannot have a positive root, so all roots x = −α are nega-
tive.

We finally turn to certificates for the Frobenius form.

Fact 2. Let A ∈ Zn×n and let G ∈ Zn×n be in Frobe-
nius form with ‖G‖ ≤ 2nen/2nn/2‖A‖n. If the Frobenius
forms for (A mod pi) are equal to (G mod pi) for distinct
primes p1, . . . , pt with

Qt
i=1 pi ≥ 8nenn2n‖A‖3n, then G is

the Frobenius form of A [4, Theorem 2.1].

There are at most n3+o(1) log ‖A‖ unlucky primes q for
which the Frobenius forms of (A mod q) are not equal to
the (Frobenius form of A) mod q [6]. The Frobenius form of

A can be represented in n2+o(1) log ‖A‖ binary space. The
bound given in Fact 2 for ‖G‖ is a valid bound for the Frobe-
nius form of A [4, Lemma 2.1]. Note that any factor coeffi-
cient bound for the characteristic polynomial will work. The
certificate for the Frobenius form of A has, as in the proof
of Theorem 4, a matrix G in Frobenius form and similarity

residues system for it. One selects a random system and
verifies the modular property of Fact 2 for that prime. If we
choose 2s prime moduli pi in such a way that the product
of any subset of s of the moduli is ≥ 8nenn2n‖A‖3n, then
for a false G of the required entry size bound, the Frobenius
form of (A mod pi) cannot be equal to (G mod pi) for more
than half of the moduli. Hence a false certificate will be re-
jected with probability ≥ 1/2. From 2s ≥ 8nenn2n‖A‖3n

we deduce that an s = n1+o(1) log ‖A‖ suffices.

Corollary 2. Let A ∈ Zn×n. The Frobenius form of A can

be verified in n2+o(1)(log ‖A‖)1+o(1) binary operations with

an n3+o(1)(log ‖A‖)1+o(1) bit space certificate.

5. ALGORITHM-BASED CERTIFICATES
OF SPACE ne+o(1) WITH e < 3

Integer matrix algorithms that have bit complexity nη+o(1)

with η < 3, where η depends on the matrix multiplication
complexity exponent ω > 2.37 [1, 8, 15, 16], automatically
lead to faster certificates. The algorithms can be random-
ized of the Las Vegas kind, always correct and probably fast.
For example, consider Storjohann’s integer matrix determi-
nant [15] and rank [16] algorithms of Las Vegas bit complex-

ity nω+o(1)(log ‖A‖)1+o(1). A certificate records a successful
(lucky) choice of the used random bits and all occurring
integer matrix multiplications and their results. Since for
a hypothetical matrix multiplication algorithm with ω = 2,

the algorithm requires n2+o(1)(log ‖A‖)1+o(1) bit operations,
the certificate bit space is no more than that. The valida-
tion procedure simply reruns the algorithm and verifies each
matrix product by Freivalds’s method in n2+o(1)l1+o(1) bit
operations, where l is the bit length of the occurring entries.

Note that if the rank r of A is r = n2/ω+o(1), it can com-
puted by a Monte Carlo algorithm without the help of any

certificate in n2+o(1)(log ‖A‖)1+o(1) bit steps [14].
The situation for the characteristic polynomial and the

Frobenius form is somewhat different. The fastest known al-
gorithms, assuming ω = 2, have to our knowledge complex-

ity n2+1/2+o(1)(log ‖A‖)1+o(1) [8, Table 6.1, Line 7], and in-

deed need that much storage: the algorithm computes A⌈√n⌉

which occupies n2+1/2+o(1)(log ‖A‖)1+o(1) bit space. How-
ever, they are Monte Carlo randomized algorithms (“always
fast, probably correct”) which makes independent certifica-
tion difficult.

We have the following theorem.

Theorem 5. We have certificates of binary space n2+o(1) ×

(log ‖A‖)1+o(1) for the rank and determinant of an integer
matrix A ∈ Zn×n that can be validated by a Monte Carlo

algorithm in n2+o(1)(log ‖A‖)1+o(1) binary operations.

Acknowledgments: The certificate for nonsingularity in
Theorem 1 was told to us by Jürgen Gerhard when dis-
cussing with him our singularity certificate at ACA 2008 in
Montreal. The referees have provided comments which have
improved the presentation of the paper.

Note added on June 14, 2011: 1. The signature of A in
Corollary 1 is verified by Descartes’s rule of signs.
2. A sharper estimate for the number of unlucky primes
for the Frobenius form than ours given below Fact 2 is
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n2+o(1) log ‖A‖ [4, Lemma 2.3].
3. As pointed out to us by Allan Borodin, our certificates are
related to designing programs that check their work [Manuel
Blum and Sampath Kannan, J. ACM, vol. 42, nr. 1, pp.
269–291, Jan. 1995]. There, the programs can be rerun on
modified inputs, as in the matrix rank check, and thus do
not have quadratic complexity. However, several of their
checks, such as for GCD, constitute certificates in our sense.

Note added on July 1, 2011: Corrected the bit space

estimate in Theorem 4 from n3+o(1)(log ‖A‖)o(1) +n1+o(1) ×

(log ‖A‖)1+o(1) to n3+o(1)(log ‖A‖)1+o(1).
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