Grenoble E {—/?(:—-\
il /M/(,

ANALYTICAL RECONSTRUCTIONS OF
REGIONS OF INTEREST IN MEDICAL
| MAGING

Second year two-months internship (16/06-17/09)
Made within the team GMCAO
Laboratory Pavillon Taillefer (CHU Michallon in Grenoble) .

Prepared by :

KEVIN POLISANO
kevi n. pol i sano@nsi mag. fr

Supervised by :
LAURENT DESBATS
| aurent . desbats@ mag. fr

Jury members :

CHRISTOPHEPICARD SOAD LOUISSI
Scientific teacher English teacher



Contents

1

Introduction

1.1 Workspace . . . . . . . . e e
1.2 Context . . . . . . e e e e

1.3 Topic

Definition and motivation
2.1 Principles of Tomography . . . . . . . . . . . . . . e e
2.2 Goaloftheintership . . . . . . . . . . . . e e

Theory

3.1 Stateoftheart. . . . . . . . . . . e
3.2 Solve the problem of incomplete data reconstruction

Implementation

4.1 Dataavailable . . . . . . .. e

4.2 Architecture . . . . . . . e e

4.3 Descriptionofthe mainfunctions. . . . . . . .. ... ... ... ... ... ...
4.3.1 acquisition.m . . . . .. L e e e

4.3.2
4.3.3

fanbeam.m . . . . ..
reconstruction.m . . . . . . .. . e e

Results and analysis

Personal record

Conclusion

Bibliography

19

20



List of Figures

[ —

W

~N O 01

10

11
12

13
14
15

16
17

18
19

The two steps in Medical Imaging : Projection/ Backpraget . . . . . . .. .. .. 4
Short-scan and three very short-scans. The object is @sstoroccupy the circular
shaded region of radiug,,, and the vertex path lies on a concentric circle of radius
Ry. The detector is always large enough to image the full opjeeteby accomodating

a maximum fan-angle of,,. (a) A conventional short-scan af+ 2+,, allows recon-
struction of the whole object. (b)—(c) A continuous scanesfsl thanr + 2+,, allows
reconstruction of all object points inside the convex htithe scan. (d) A scan of three
equally spaced segments of°8ach allows reconstruction of a triangular ROI in the
centreoftheobject. . . . . . . . . . e 5
An integral line defined by two variablés,s). . . . ... ... ... ... ...... 6
Implications of the Hilbert projection equality. A trurted parallel projection is shown

(the dotted lines are unmeasured). According to parallgkeption theory, if any pro-
jection is truncated, then reconstruction at (any) poinamrmot be performed because

pu (9, s) cannot be obtained. However, the Hilbert projection edqyahows thap (¢, s)
might still be obtained vigy (v, s) provided a complete (nontruncated) fanbeam pro-
jection g(v,, .) exists whose vertex lies on the lig@, s). For data consisting entirely

of complete fanbeam projections, the pointan be reconstructed provided a fanbeam

vertex lies on each line passingthrough. . . . . . . ... ... ... ........ 8
Shepp-Logan phantom (Siz@8 x 128) . . . . . . . . . . . . . . 9
Global architecture of the Matlab program. . . . . . . .. .. ... .. ... .. 10

The source of X-rays moves on the vertex path, and for eashiquo (corresponding
to a vertex pointu(\;)) scans the FOV (blue circle) containing the whole object by
calculatingg(\;, ;) for all ;. This illustrates the construction of the sinogram

made by the function fillSinogram.m . . . . . . . . ... ... ... . oL 11
On the left a small cut-off (keep low frequencies), on tlyghtigreater cut-off (oscilla-
tions frequencies greater). We can see this new functioefisetl at the origin. . . . . 12

A X-ray crossing the object inside the FOV (here equal tdRG4). The red filled point
is a vertex pointi(\;) and the red beam correspondgo\;, ;) whereq; is the angle

between the black lineandthebeam. . . . . . . . ... .. ... ... ... ... 13
The discrete line integral seen in the image refererfaly green points (in the FOV)
contribute to the projection calculation. . . . . ... ... .. ........... 13
Bilinear interpolation ofjy (A, a) « .« o o o o oo 14

1. The intersections between the lim€¢;), s;) and the circle are determined (blue and
yellow points) ; 2. The angle, between the black and blue line is determined ; 3. We
search in arrayBimbda andangles the values such thag € [\;, \;11] anda; € [a;, o 41] 15

4. The four beamgy (N, @), gu(ANit1, @), g (N, aj41) andgg (N1, a41) are plotted. 15
lllustration of the operations made in chain on the arlafsre the reconstruction step. 16
Sinogram of a part of the Shepp-Logan phantom in a fanbemmetry almost equiv-

alentto a parallelgeometry. . . . . . . . .. e 17
Sinogram filtered by the Hilbertfilter. . . . . . .. ... .. .. .. .. ...... 17
Image corresponding to PH after rebinning. Two regioesgnmt a sign problem, that is

half fixed by taking the difference instead themean. . . . . ...... . .. ... ... 18
Image corresponding to PH after rebinning. . . . . . . ... ... 18
Image reconstructed (the square inscribed in the FOVegirc . . . . . . . ... ... 19



1 Introduction

1.1 Workspace

| did my intership within the TIMC-IMAG Laboratory (Technigs for biomedical engineering
and complexity management — informatics, mathematics pplications — Grenoble ).
The TIMC-IMAG is a collaboration of scientists and cliniogusing computer science and applied
mathematics for understanding and controlling normal atdglogical processes in biology and health-
care. This multi-disciplinary activity contributes boththe basic knowledge of those domains and to
the development of systems for computer-assisted diagjaosi therapy.

1.2 Context

| worked in the GMCAO team (Biomechanical modelling, imagegessing, data fusion and
robotics for computer-assisted medical interventions)) muore specifically in the field of image pro-
cessing. | was supervised by Laurent Desbats, researchexdital imaging. He takes part to a project
with the company “Surgivisio”, which is focused on reseaadidl development of advanced solutions
for surgeons, using 3D imaging and surgical navigationrietdgies. It empowers the surgeons with
innovative and efficient tools, reducing surgical time,ugdg x-ray exposure, and increasing safety
and accuracy of complex interventions.

1.3 Topic

| was interested by the reconstruction part of this projaet] in particular the point was to re-
duce the x-ray exposure by decreasing the trajectory ofdaerer around the patient. But this point
implies a lot of modifications in the classical reconstroctivay.

To start with, | had to understand principles of tomographg the mathematic theory which
hides behind them. | spent a lot of time learning differenysvaf reconstruction. There are two schools
of thought : reconstruction by analytical methods and bylatgic methods. | considered both, but
since another student developped algorithms based onralgebethods, | decided then to focus mine
on analytical methods.

| read several research papers relating the state of thd aredical imaging research in the
last few years. We decided to develop a Matlab program wiingiiements reconstruction of a specific
region (called region of interest) when the scanner moves sirort trajectory.



2 Definition and motivation

2.1 Principles of Tomography

Tomography refers to the cross-sectional imaging of anablijem either transmission or re-
flection data collected by illuminating the object from matiiferent directions. The impact of this
technique in diagnostic medicine has been revolutionamgesit has enabled doctors to view internal
organs with unprecedented precision and safety to thematihe first medical application utilized
x-rays for forming images of tissues based on their x-ragratation coefficient.
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Figure 1: The two steps in Medical Imaging : Projection / Backection

The principle is illustrated above : a source of x-rays ctbesobject and the detector receives attenu-
ation of the beams (i.e a projection). The source often de=xia circular trajectory around the object
and so produces several projections with different angle=p(A,B). Then, some algorithms have to
reconstruct the object from those projections (step C,¢over the density function of the object).

2.2 Goal of the intership

Until a couple of years ago, scientists thought that we haddasure all the lines crossing the object to
be able to reconstruct it, and consequently to describéealirajectory around the object. Recently, in
2002, it was proven that it is possible to reconstruct regjiminan object from incomplete data, in our
case from shorter trajectory, see below :



(d)

Figure 2: Short-scan and three very short-scans. The alsjessumed to occupy the circular shaded
region of radiusR,,, and the vertex path lies on a concentric circle of radiiygs The detector is
always large enough to image the full object, thereby acdatiog a maximum fan-angle af,,. (a)

A conventional short-scan af + 2+,, allows reconstruction of the whole object. (b)—(c) A conbas
scan of less than + 2+,, allows reconstruction of all object points inside the conliall of the scan.
(d) A scan of three equally spaced segments 6fe&h allows reconstruction of a triangular ROl in the
centre of the object.

During this internship, | began by understanding this neragigm and the mathematical con-
cepts underlying it, and then to implement algorithms retaction of 2D image with Matlab. Interests
at stake are multiple : reduced measurement requiremenediately suggested important dose reduc-
tions for some kinds of scans. Also, oversized objects, sischery large patients that exceed the
scanner field of view, could be at least partially imaged.

After having exposed some theory elements of mathemagcalnstruction, | will present the Matlab
program | wrote, with the aim of reconstructing a region démest of the scan of a brain.



3 Theory

3.1 State of the art

We summarize here the state of the art of 2-D image reconigtrutheory at the turn of the
century. We first establish some notational conventionse Vdriablesy and 5 will always represent
unit vectors in the plane, whose directions are giverf lag follows:

a = (cos ¢,sin ¢) Q)

B = (~sing, cos ) )

The unknown density function will be denot¢dr) = f(z,y) , and the projection data will be denoted
p(¢, s), which is the line integral of the density function along three oriented at angle from the
horizontal(z) axis and at a signed distaneérom the origin. So

p(d,5) = / f(ra+ sB)for é € (0,7), s € (—o0,50) 3
_ Line (@, 5)
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-
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Figure 3: An integral line defined by two variables s).

The one-dimensional functigr{¢, .) is called the parallel projection of the functignn the directiony.
It is rare that a scanner would collect line-integral datthia form of parallel projections, with uniform
angular increments and uniform detector increments.

When presented as a 2-D image, the géita s) is called the sinogram. Equation (3) expresses the 2-D
Radon transform, which maps the density functjoto the sinogranmp. It is about the first step (the
acquisition of all projections).

Then to reconstruct the object, which means recover theitgeiusiction of the object, we use the
Filtered Back Projection (FBP) reconstruction formula :
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f(x)=:jCWpR<¢7SMs:mﬁd¢ (%)

with pr(o,.) = p(¢,.) x r wherer(s) is the ideal ramp filter kernel whose Fourier transfornkis) =
lo|. Note thatR(o) = |o| = (5)(2mic)(—isgno) , SO we can express the ramp filter as a derivative
composed with a Hilbert transform. Equation (4) can be igday

pal6.5) = 5 5-pu(:5) ©

with p (¢, .) = p(¢,.) * h whereh(s) = ~.

Now a study of the operations on the right hand side from (4) @) shows that all values of the
sinogramp(¢, s) are used in the reconstruction formula because the ramglkers) is known to be
nonzero almost everywhere. At each point in the recongdughage, all nonzero elements of the
sinogram make a nonzero contribution to reconstructioris property of Radon’s inversion formula
strongly suggests that any missing data will affect the whimlage, independent of the algorithm used
for reconstruction.

3.2 Solve the problem of incomplete data reconstruction

Fanbeam projections also play a role in partial data probleffrom a physical standpoint,
fanbeam projections are more natural in the context of Xuragging, where the measurement rays all
diverge from a point that corresponds to the location of theda of the X-ray source. We refer to
this point as the fanbeam vertex, a. The vertex follows &¢ttajy around the object, typically a circle
outside the scanner port, but we will be more general hergparaieterize the movement of the vertex
asa(\), with a scalar variablé € A whereA is an interval. We use to represent fanbeam data :

900 = [ faln) + ta)d ©)
0
(wherea is given by (1) as usual). The one-dimensional functjoh .) is called a fanbeam projection.

We present a mathematical formula with direct consequefncd20I reconstruction from incomplete
(yet mathematically sufficient) data. First, the Hilbedrtsform of fanbeam data is defined to be:

g (v, @) = /o ﬂg(Um ¢ h(sin(¢ — ¢'))d¢’ (7)

and we note that calculation ¢f; (v, ¢) requires all values of the fanbeam projectign,, .), just as
the calculation oby (¢, s) requires all values of the parallel projectipfy, .). The parallel-fanbeam
Hilbert projection equality is

pr(¢,5) = gu(vr, ¢) Wheres = vy - 3 (8)
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Figure 4: Implications of the Hilbert projection equali#d.truncated parallel projection is shown (the
dotted lines are unmeasured). According to parallel ptmjet¢heory, if any projection is truncated, then
reconstruction at (any) point x cannot be performed becauég, s) cannot be obtained. However, the
Hilbert projection equality shows tha; (¢, s) might still be obtained vigy (v,, s) provided a complete
(nontruncated) fanbeam projectigfv,, .) exists whose vertex lies on the lie, s). For data consisting
entirely of complete fanbeam projections, the pairdan be reconstructed provided a fanbeam vertex
lies on each line passing through

Equation (8) is of fundamental importance. It shows thatelesome flexibility in obtaining (¢, .),

in particular if any values of thg(¢, .) projection are unavailable (truncated, for example). Thibe
key point, because it was previously assumed fhdt, s) could not be obtained for anyif the pro-
jectionp(¢, .) was truncated. Instead, we see thato, s)can be evaluated using a fanbeam projection
provided (i) the fanbeam vertexlies on the ling(¢, s) , and (ii) the fanbeam projectiof(v, .) is not
truncated.

For the case of a 2-D scan consisting of complete fanbearsgirofns, the Hilbert projection equality
provides a significantly improved data sufficiency condifiallowing partial reconstruction from a fan-
beam trajectory on less than a shortscan, that is, from @&&nltrajectory too short to measure all lines
through the object (see Figure 4).

Fanbeam Data Condition: The point x can be reconstructed from complete fanbeam projections pro-
vided a fanbeam vertex can be found on each line passing through x (C1)

To sum up, to determing(x) wherez is in the ROI, we have to calculajg/(¢, s) or in an equivalent
way py (¢, s) in all directions according to (4) and (5) and it is theoriigalossible sincer verify the
condition (C1). But we use a fanbeam source, that's why weyathe Hilbert equalitypy (¢, s) =
gu(vy, ¢) andgy is obtained by (7) where the fanbeam projection, .) is not truncated.



4 Implementation

4.1 Data available

¢ | worked on an image of a head phantom, called Shepp-Logamtmawhich is a grayscale inten-
sity image that consists of one large ellipse (represerttiagrain) containing several smaller ellipses

(representing features in the brain).

Figure 5: Shepp-Logan phantom (SiZ& x 128)

e The program requires some constants to specify :

* The image’s position, dimension and orientation.

* The radiusR,,,; of the circular trajectory.

* The numbertVV ertex of vertex points on this trajectory.

* The numbeNbeams of beams emitted at a vertex point.

* The half-angle maximuny,, which determine the field of view (FOV).
* The radiusR RO1 of the FOV.

* The discretisation of the circular FOV :

gbk:k:%, k=0.M—1

RROI
Q )

Sl:l

I=-Q.Q

4.2 Architecture

(9)

(10)

The goal is first to generate fanbeam projections of a ROl igfithage in all directions, and then to

reconstruct this ROI accurately.

The Matlab program is divided into 3 main files :



First the program needs some parameters |ike
the object’s position, the ROI radius, the ver-

acquisition.m tex path and so on. Then it proceeds to com-
pute the tomography imaging, this is the pro-
jection step.

It is the main file which precalculates som
variables for the reconstruction, and enables
to display every step of the fanbeam methads.

reconstruction.

For eachz in the ROI the algorithm evaluates
f(z), it is the backprojection step.

Figure 6: Global architecture of the Matlab program.

4.3 Description of the main functions
4.3.1 acquisition.m

This file calls the following functions :

e i ni t _dat a. m: initializes constants of the previous section and allesabemory for some struc-
tures like : the sinograr@, the hilbert filterH, the hilbert transform of the sinograth, andph (resp.

php) the array which will contaip g (n(¢x), ;) (resp.p’y (n(éx), s1))-

ofill Sinogram m: fills the arrayG (size NVertex x Nbeams) by calculating ally()\;, ), i.e the
discrete line integral passing through the image.

ofi |l H | bert.m:fills the arrayGH (same size that G) resulting of the Hilbert transform agplie
to G (all g (N, n(a;)) are determined).

10
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Figure 7: The source of X-rays moves on the vertex path, anédoh position (corresponding to a
vertex pointa();)) scans the FOV (blue circle) containing the whole objectégwaatingg()\;, ;) for

all ;. This illustrates the construction of the sinograhmade by the function fillSinogram.m

Remark on fillHilbert

| had to regularize the hilbert functiory, (s) = é because the integral of the convolutign (see (7))
was unstable around zero. Recall that the Hilbert transfafrenfunctiong : R — C in the frequency

domainis: -
Hg(v) = —isign(v)g(v)

We defineH, the regularized Hilbert transform by :

—

Hog(v) & —isign(v)x_eq()i(v)

We can prove that :

H.g(s) = he* g(s)

he(s) = h(s)[1 — cos(2msc)] = 7% sin?(msc) = 2sinc(rsc)c’rs

This new function is nowC>(R).

11
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| chose a cut-off frequenay:

~ 200——%
¢ = 2005 roT

T T T T T T T T T T T T T T T T T
Hilbert function h — Hilbert function h
a4k h regularized il 4l h regularized ,

Figure 8: On the left a small cut-off (keep low frequencies),the right greater cut-off (oscillations
frequencies greater). We can see this new function is deéintgk origin.

4.3.2 fanbeam.m

| made the effort to produce a Matlab program which could beaghing aid. Indeed this function
enables us to choosenade which correspond to a particular step in the tomographygsecBesides,
it was a very practical way to debug the program.

e mode onebeam

This mode enables us to display the image boundaries (kitegle), the FOV (here equal to the ROI),
the vertex path and one beam which cross the image. The rdifitlint is a vertex point();) and the

red beam correspond td\;, o;) whereq; is the angle between the black line and the beam. We can
also visualize the line integral discretisation in the refgial of the image (figure 10). The object we
want to reconstruct is inside the FOV, so only green pointgrdaute to the integral.

12
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Figure 9: A X-ray crossing the object inside the FOV (hereado the ROI). The red filled point is
a vertex point()\;) and the red beam correspondgto\;, ;) whereq; is the angle between the black
line and the beam.
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Figure 10: The discrete line integral seen in the image eetal. Only green points (in the FOV)
contribute to the projection calculation.
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e mode rebinning:

In this mode we can play with the Hilbert equality by considgrthe illustration of rebinning, i.e the
calculation ofpy. Let us see how it works to evalugi®(k, ) = py(n(or), s;) :

1. First we look for the intersections of the line(¢y), s;) (black line on figure 12) with the cir-
cle (radiusRtraj) what gives two points?’1 = a()\;) and P2 = a()s), outputs of the function

i nt er sec_pat h. m The variables”1in and P2in precise if these points belong to the vertex path.
If it is the case the point appears on blue on the graph (elsekow).

2. Then we determine the angle = (P, P,0, P,P,;) whereP,, = s;n(¢;) (black point),P, = a()\,)
the point previously found and the origin (magenta point). This is the role of the func@mphat . m

3. We also determine the indicéeand; (resp. by the functiofii ndVer t ex. mandf i ndAngl e. m
such that\; < A, < A4 (the two pointsu();) anda(A;+1) are in green on the figure) ang < o <
Qjt1-

4. Theorically the Hilbert equality stipulates that (n(¢x), s;)) = gu (A, o) but as we work with a
discretisation we have to carry out a bilinear interpolafimade by the functionnt er pol Bi | GH. m)

gr(Ae,ar) = gr(Ni; o) (Nig1 — M) (a1 — a) + g (Mg, o) (Ae — i) (@1 — i)+
g (i, 0éj+1)(>\i+1 — At) (o — aj) + g (Nit1, aj-i—l)()\t — i) — o)

y
o
S R N JU I
\ l |
77777777777777777777777777 . T R

GH

Figure 11: Bilinear interpolation afy (A, a;)
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Figure 12: 1. The intersections between the linépy), s;) and the circle are determined (blue and
yellow points) ; 2. The angle; between the black and blue line is determined ; 3. We searatrays
lambda andangles the values such tha; € [\;, A\;11] andoy € [, aji]
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Figure 13: 4. The four beamg; (\;, o), gu(Nit1, ), g (Ni, aj+1) andgg (X1, a;41) are plotted.

The previous part explains how the functioal cul at e_ph. mproceeds, this is the way it fills the
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arrayph(k,l). The functioncal cul at e_php can from now fills theohp array :

Py (n(or), s1) =~ pa(n(dr), s141) — pa(n(dr), si-1) 13
Si41 — Si-1

At the end of this second part, we realized this serie of djmers::

acquisition.m ( fanbeam.m )

*h rebinning L

GH » PH PHP

Y

@

L J L J

Figure 14: Illustration of the operations made in chain andlrays before the reconstruction step.

4.3.3 reconstruction.m
Finally f(z) is computed according to the formula :

M

> P(n(er), = - n(ex)) (14)

k=1
using linear interpolation between the two samples éarest ta - n(¢y).

1

f(l’)ﬁm

If x € ROI then it will reconstruct accurately.

5 Results and analysis

These results are obtained with the following parameters :

* Ripaj = 500
* RROI = 50
* RROI = 50

x NVertex = 256
* Nbeams = 512
* Y = arcsin(ﬁggj) ~ 6°

*Q =128, M = 401,

The source is far enough from the objeB},(; >> RROI) to imagine that the sinogram will look like
a sinogram in the parallel geometry since the beams will m®si parallels due to the distance. Indeed
we obtain a pretty good result :

16



Figure 15: Sinogram of a part of the Shepp-Logan phantom anadam geometry almost equivalent
to a parallel geometry.

This sinogram’ has the usual form. Applying the regularized Hilbert filter this sinogram, we get
for GH an image close to the sinogram display but smooth, which séagrcal.

Figure 16: Sinogram filtered by the Hilbert filter.

The rebinning enables getting from fanbeam geometry talphgeometry, producing this image for
PH:

17



Figure 17: Image corresponding to PH after rebinning. Tvgpams present a sign problem, that is half
fixed by taking the difference instead the mean.

The image seems to be good, but as you can notice, there iblepron uniform grey region (all pixels
values are 0). | understood these regions as corresporadiimg {n(¢y.), s;)) which intersect the vertex
path in two pointsz(A;) anda()s). In my initial program | calculate the mean of each contiidut

g (A1, ) andgy (A2, —a), but it turns out thay; (A1, @) ~ —gr (A2, ). That's why | rather take the
difference, it solves the problem just for one region, tHeeohas an opposite grey level (image on the
right). 1 will try to fix that point before the end of the inténip. In any case this inversion of contrast
isn't really a problem because the next step calculate theadiwe, so only variation is interesting.

Figure 18: Image corresponding to PH after rebinning.

The problem is just visible on a line, what means only onexridevill give a bad value fop/; (n (s, ), z-

n(¢k,)) in the sum ofM terms. The effect is negligible among thé = 401 values taken. Indeed we
finally obtain a good reconstruction :

18
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Figure 19: Image reconstructed (the square inscribed ir@\ circle)

6 Personal record

| enjoyed discovering a new sector in the field of informatesl mathematics applied to the
healthcare (I already made an initiation to the researchboratory on the theme of neurosciences). |
was introduced to a new area of maths, and above all | reatined again how difficult it is to get a
robust implementation from a theorical analysis (in a shertod of two months). Indeed many times |
grappled with numerical problems which don’t exist in thedtor instance some comparisons between
numbers (like45 > 45.000) appear false, divisions by zero, singular matrix, or indity problems
(as the problem of the convergence of the integgathat | was compelled to regularized) and so on.
This kind of error is often difficult to identify, so | aimed ttivide my program into many functions
that could be tested individually. Moreover, the differewides | set up were very useful in identifying
where the program failed by visualing the process on plot.

Besides | discovered the business world and all the probiesnmaplies : the economic dimen-
sion, we have to find funds before we can launch a project; dngpetition between companies and
the question of confidentiality : patents must be taken sehjo | didn’t realize all of that during my
university studies, but what | appreciated in company is éokwvithin a team whose members come
from a variety of backgrounds. That point was very interggtand | liked being plunged in the mix of
mathematics, informatics, robotics and medicine.

7 Conclusion

At that time, all the processes of reconstruction in two digiens work in Matlab for a short scan tra-
jectory. The next step will be first to fix the related errorl&am check that the reconstruction still works
for less than a short scan trajectory. Then | will bring somprovements to accelerate the execution
of the program, and eventually | would like to quantify myuks (noise resistance, stability, and so on).

In the future we can imagine that this algorithm will be a@alhih C++ (to gain more performance) and
integrated in 3D reconstruction.
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