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K ÉVIN POLISANO
kevin.polisano@ensimag.fr

Supervised by :

LAURENT DESBATS
laurent.desbats@imag.fr

Jury members :

CHRISTOPHEPICARD SOAD LOUISSI
Scientific teacher English teacher



Contents

1 Introduction 3
1.1 Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3
1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3
1.3 Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Definition and motivation 4
2.1 Principles of Tomography . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 4
2.2 Goal of the intership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 4

3 Theory 6
3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 6
3.2 Solve the problem of incomplete data reconstruction . . .. . . . . . . . . . . . . . . 7

4 Implementation 9
4.1 Data available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 9
4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 9
4.3 Description of the main functions . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 10

4.3.1 acquisition.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 10
4.3.2 fanbeam.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.3 reconstruction.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 16

5 Results and analysis 16

6 Personal record 19

7 Conclusion 19

8 Bibliography 20

1



List of Figures

1 The two steps in Medical Imaging : Projection / Backprojection . . . . . . . . . . . . 4
2 Short-scan and three very short-scans. The object is assumed to occupy the circular

shaded region of radiusRm, and the vertex path lies on a concentric circle of radius
R0. The detector is always large enough to image the full object, thereby accomodating
a maximum fan-angle ofγm. (a) A conventional short-scan ofπ + 2γm allows recon-
struction of the whole object. (b)–(c) A continuous scan of less thanπ + 2γm allows
reconstruction of all object points inside the convex hull of the scan. (d) A scan of three
equally spaced segments of 80◦ each allows reconstruction of a triangular ROI in the
centre of the object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 5

3 An integral line defined by two variables(φ, s). . . . . . . . . . . . . . . . . . . . . . 6
4 Implications of the Hilbert projection equality. A truncated parallel projection is shown

(the dotted lines are unmeasured). According to parallel projection theory, if any pro-
jection is truncated, then reconstruction at (any) point x cannot be performed because
pH(φ, s) cannot be obtained. However, the Hilbert projection equality shows thatpH(φ, s)
might still be obtained viagH(vλ, s) provided a complete (nontruncated) fanbeam pro-
jectiong(vλ, .) exists whose vertex lies on the line(φ, s). For data consisting entirely
of complete fanbeam projections, the pointx can be reconstructed provided a fanbeam
vertex lies on each line passing throughx. . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Shepp-Logan phantom (size128× 128) . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Global architecture of the Matlab program. . . . . . . . . . . . . .. . . . . . . . . . 10
7 The source of X-rays moves on the vertex path, and for each position (corresponding

to a vertex pointa(λi)) scans the FOV (blue circle) containing the whole object by
calculatingg(λi, αj) for all αj . This illustrates the construction of the sinogramG
made by the function fillSinogram.m . . . . . . . . . . . . . . . . . . . . .. . . . . . 11

8 On the left a small cut-off (keep low frequencies), on the right greater cut-off (oscilla-
tions frequencies greater). We can see this new function is defined at the origin. . . . . 12

9 A X-ray crossing the object inside the FOV (here equal to theROI). The red filled point
is a vertex pointa(λi) and the red beam correspond tog(λi, αj) whereαj is the angle
between the black line and the beam. . . . . . . . . . . . . . . . . . . . . .. . . . . . 13

10 The discrete line integral seen in the image referential.Only green points (in the FOV)
contribute to the projection calculation. . . . . . . . . . . . . . .. . . . . . . . . . . 13

11 Bilinear interpolation ofgH(λt, αt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
12 1. The intersections between the line(n(φk), sl) and the circle are determined (blue and

yellow points) ; 2. The angleαt between the black and blue line is determined ; 3. We
search in arrayslambda andangles the values such thatλt ∈ [λi, λi+1] andαt ∈ [αj , αj+1] 15

13 4. The four beamsgH(λi, αj), gH(λi+1, αj), gH(λi, αj+1) andgH(λi+1, αj+1) are plotted. 15
14 Illustration of the operations made in chain on the arraysbefore the reconstruction step. 16
15 Sinogram of a part of the Shepp-Logan phantom in a fanbeam geometry almost equiv-

alent to a parallel geometry. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 17
16 Sinogram filtered by the Hilbert filter. . . . . . . . . . . . . . . . .. . . . . . . . . . 17
17 Image corresponding to PH after rebinning. Two regions present a sign problem, that is

half fixed by taking the difference instead the mean. . . . . . . .. . . . . . . . . . . . 18
18 Image corresponding to PH after rebinning. . . . . . . . . . . . .. . . . . . . . . . . 18
19 Image reconstructed (the square inscribed in the FOV circle) . . . . . . . . . . . . . . 19

2



1 Introduction

1.1 Workspace

I did my intership within the TIMC-IMAG Laboratory (Techniques for biomedical engineering
and complexity management – informatics, mathematics and applications – Grenoble ).
The TIMC-IMAG is a collaboration of scientists and clinicians using computer science and applied
mathematics for understanding and controlling normal and pathological processes in biology and health-
care. This multi-disciplinary activity contributes both to the basic knowledge of those domains and to
the development of systems for computer-assisted diagnosis and therapy.

1.2 Context

I worked in the GMCAO team (Biomechanical modelling, image processing, data fusion and
robotics for computer-assisted medical interventions) and more specifically in the field of image pro-
cessing. I was supervised by Laurent Desbats, researcher inmedical imaging. He takes part to a project
with the company “Surgivisio”, which is focused on researchand development of advanced solutions
for surgeons, using 3D imaging and surgical navigation technologies. It empowers the surgeons with
innovative and efficient tools, reducing surgical time, reducing x-ray exposure, and increasing safety
and accuracy of complex interventions.

1.3 Topic

I was interested by the reconstruction part of this project,and in particular the point was to re-
duce the x-ray exposure by decreasing the trajectory of the scanner around the patient. But this point
implies a lot of modifications in the classical reconstruction way.

To start with, I had to understand principles of tomography and the mathematic theory which
hides behind them. I spent a lot of time learning different ways of reconstruction. There are two schools
of thought : reconstruction by analytical methods and by algebraic methods. I considered both, but
since another student developped algorithms based on algebraic methods, I decided then to focus mine
on analytical methods.

I read several research papers relating the state of the art of medical imaging research in the
last few years. We decided to develop a Matlab program which implements reconstruction of a specific
region (called region of interest) when the scanner moves ona short trajectory.
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2 Definition and motivation

2.1 Principles of Tomography

Tomography refers to the cross-sectional imaging of an object from either transmission or re-
flection data collected by illuminating the object from manydifferent directions. The impact of this
technique in diagnostic medicine has been revolutionary, since it has enabled doctors to view internal
organs with unprecedented precision and safety to the patient. The first medical application utilized
x-rays for forming images of tissues based on their x-ray attenuation coefficient.

Figure 1: The two steps in Medical Imaging : Projection / Backprojection

The principle is illustrated above : a source of x-rays crossthe object and the detector receives attenu-
ation of the beams (i.e a projection). The source often describes a circular trajectory around the object
and so produces several projections with different angles (step A,B). Then, some algorithms have to
reconstruct the object from those projections (step C, to recover the density function of the object).

2.2 Goal of the intership

Until a couple of years ago, scientists thought that we had tomeasure all the lines crossing the object to
be able to reconstruct it, and consequently to describe all the trajectory around the object. Recently, in
2002, it was proven that it is possible to reconstruct regions of an object from incomplete data, in our
case from shorter trajectory, see below :
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Figure 2: Short-scan and three very short-scans. The objectis assumed to occupy the circular shaded
region of radiusRm, and the vertex path lies on a concentric circle of radiusR0. The detector is
always large enough to image the full object, thereby accomodating a maximum fan-angle ofγm. (a)
A conventional short-scan ofπ + 2γm allows reconstruction of the whole object. (b)–(c) A continuous
scan of less thanπ + 2γm allows reconstruction of all object points inside the convex hull of the scan.
(d) A scan of three equally spaced segments of 80◦ each allows reconstruction of a triangular ROI in the
centre of the object.

During this internship, I began by understanding this new paradigm and the mathematical con-
cepts underlying it, and then to implement algorithms reconstruction of 2D image with Matlab. Interests
at stake are multiple : reduced measurement requirement immediately suggested important dose reduc-
tions for some kinds of scans. Also, oversized objects, suchas very large patients that exceed the
scanner field of view, could be at least partially imaged.

After having exposed some theory elements of mathematical reconstruction, I will present the Matlab
program I wrote, with the aim of reconstructing a region of interest of the scan of a brain.
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3 Theory

3.1 State of the art

We summarize here the state of the art of 2-D image reconstruction theory at the turn of the
century. We first establish some notational conventions. The variablesα andβ will always represent
unit vectors in the plane, whose directions are given byf as follows:

α = (cosφ, sinφ) (1)

β = (− sinφ, cosφ) (2)

The unknown density function will be denotedf(x) = f(x, y) , and the projection data will be denoted
p(φ, s), which is the line integral of the density function along theline oriented at angleφ from the
horizontal(x) axis and at a signed distances from the origin. So

p(φ, s) =

∫ ∞

−∞

f(rα+ sβ) for φ ∈ (0, π), s ∈ (−∞,∞) (3)

Figure 3: An integral line defined by two variables(φ, s).

The one-dimensional functionp(φ, .) is called the parallel projection of the functionf in the directionφ.
It is rare that a scanner would collect line-integral data inthis form of parallel projections, with uniform
angular increments and uniform detector increments.

When presented as a 2-D image, the datap(φ, s) is called the sinogram. Equation (3) expresses the 2-D
Radon transform, which maps the density functionf to the sinogramp. It is about the first step (the
acquisition of all projections).

Then to reconstruct the object, which means recover the density function of the object, we use the
Filtered Back Projection (FBP) reconstruction formula :
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f(x) =

∫ π

0

pR(φ, s)|s=x·βdφ (4)

with pR(φ, .) = p(φ, .) ∗ r wherer(s) is the ideal ramp filter kernel whose Fourier transform isR(σ) =
|σ|. Note thatR(σ) = |σ| = ( 1

2π
)(2πiσ)(−isgnσ) , so we can express the ramp filter as a derivative

composed with a Hilbert transform. Equation (4) can be replaced by

pR(φ, s) =
1

2π

∂

∂s
pH(φ, s) (5)

with pH(φ, .) = p(φ, .) ∗ h whereh(s) = 1
πs

.

Now a study of the operations on the right hand side from (4) and (5) shows that all values of the
sinogramp(φ, s) are used in the reconstruction formula because the ramp kernel r(s) is known to be
nonzero almost everywhere. At each point in the reconstructed image, all nonzero elements of the
sinogram make a nonzero contribution to reconstruction. This property of Radon’s inversion formula
strongly suggests that any missing data will affect the whole image, independent of the algorithm used
for reconstruction.

3.2 Solve the problem of incomplete data reconstruction

Fanbeam projections also play a role in partial data problems. From a physical standpoint,
fanbeam projections are more natural in the context of X-rayimaging, where the measurement rays all
diverge from a point that corresponds to the location of the anode of the X-ray source. We refer to
this point as the fanbeam vertex, a. The vertex follows a trajectory around the object, typically a circle
outside the scanner port, but we will be more general here andparameterize the movement of the vertex
asa(λ), with a scalar variableλ ∈ Λ whereΛ is an interval. We useg to represent fanbeam data :

g(λ, φ) =

∫ ∞

0

f(a(λ) + lα)dl (6)

(whereα is given by (1) as usual). The one-dimensional functiong(λ, .) is called a fanbeam projection.

We present a mathematical formula with direct consequencesfor ROI reconstruction from incomplete
(yet mathematically sufficient) data. First, the Hilbert transform of fanbeam data is defined to be:

gH(vλ, φ) =

∫ 2π

0

g(vλ, φ
′)h(sin(φ− φ′))dφ′ (7)

and we note that calculation ofgH(vλ, φ) requires all values of the fanbeam projectiong(vλ, .), just as
the calculation ofpH(φ, s) requires all values of the parallel projectionp(φ, .). The parallel-fanbeam
Hilbert projection equality is

pH(φ, s) = gH(vλ, φ) wheres = vλ · β (8)
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Figure 4: Implications of the Hilbert projection equality.A truncated parallel projection is shown (the
dotted lines are unmeasured). According to parallel projection theory, if any projection is truncated, then
reconstruction at (any) point x cannot be performed becausepH(φ, s) cannot be obtained. However, the
Hilbert projection equality shows thatpH(φ, s) might still be obtained viagH(vλ, s) provided a complete
(nontruncated) fanbeam projectiong(vλ, .) exists whose vertex lies on the line(φ, s). For data consisting
entirely of complete fanbeam projections, the pointx can be reconstructed provided a fanbeam vertex
lies on each line passing throughx.

Equation (8) is of fundamental importance. It shows that there is some flexibility in obtainingpH(φ, .),
in particular if any values of thep(φ, .) projection are unavailable (truncated, for example). Thisis the
key point, because it was previously assumed thatpH(φ, s) could not be obtained for anys if the pro-
jectionp(φ, .) was truncated. Instead, we see thatpH(φ, s)can be evaluated using a fanbeam projection
provided (i) the fanbeam vertexv lies on the line(φ, s) , and (ii) the fanbeam projectiong(v, .) is not
truncated.

For the case of a 2-D scan consisting of complete fanbeam projections, the Hilbert projection equality
provides a significantly improved data sufficiency condition, allowing partial reconstruction from a fan-
beam trajectory on less than a shortscan, that is, from a fanbeam trajectory too short to measure all lines
through the object (see Figure 4).

Fanbeam Data Condition: The point x can be reconstructed from complete fanbeam projections pro-
vided a fanbeam vertex can be found on each line passing through x (C1)

To sum up, to determinef(x) wherex is in the ROI, we have to calculatepR(φ, s) or in an equivalent
way pH(φ, s) in all directions according to (4) and (5) and it is theorically possible sincex verify the
condition (C1). But we use a fanbeam source, that’s why we apply the Hilbert equalitypH(φ, s) =
gH(vλ, φ) andgH is obtained by (7) where the fanbeam projectiong(v, .) is not truncated.
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4 Implementation

4.1 Data available

• I worked on an image of a head phantom, called Shepp-Logan phantom, which is a grayscale inten-
sity image that consists of one large ellipse (representingthe brain) containing several smaller ellipses
(representing features in the brain).

Figure 5: Shepp-Logan phantom (size128× 128)

• The program requires some constants to specify :

⋆ The image’s position, dimension and orientation.
⋆ The radiusRtraj of the circular trajectory.
⋆ The numberNV ertex of vertex points on this trajectory.
⋆ The numberNbeams of beams emitted at a vertex point.
⋆ The half-angle maximumγm which determine the field of view (FOV).
⋆ The radiusRROI of the FOV.
⋆ The discretisation of the circular FOV :

φk = k
π

M
, k = 0..M − 1 (9)

sl = l
RROI

Q
, l = −Q..Q (10)

4.2 Architecture

The goal is first to generate fanbeam projections of a ROI of this image in all directions, and then to
reconstruct this ROI accurately.

The Matlab program is divided into 3 main files :
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acquisition.m

fanbeam.m

reconstruction.m

First the program needs some parameters like
the object’s position, the ROI radius, the ver-
tex path and so on. Then it proceeds to com-
pute the tomography imaging, this is the pro-
jection step.

It is the main file which precalculates some
variables for the reconstruction, and enables
to display every step of the fanbeam methods.

For eachx in the ROI the algorithm evaluates
f(x), it is the backprojection step.

Figure 6: Global architecture of the Matlab program.

4.3 Description of the main functions

4.3.1 acquisition.m

This file calls the following functions :

• init_data.m : initializes constants of the previous section and allocates memory for some struc-
tures like : the sinogramG, the hilbert filterH, the hilbert transform of the sinogramGH, andph (resp.
php) the array which will containpH(n(φk), sl) (resp.p′H(n(φk), sl)).

• fillSinogram.m : fills the arrayG (sizeNV ertex×Nbeams) by calculating allg(λi, αj), i.e the
discrete line integral passing through the image.

• fillHilbert.m : fills the arrayGH (same size that G) resulting of the Hilbert transform applied
toG (all gH(λi, n(αj)) are determined).
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Figure 7: The source of X-rays moves on the vertex path, and for each position (corresponding to a
vertex pointa(λi)) scans the FOV (blue circle) containing the whole object by calculatingg(λi, αj) for
all αj . This illustrates the construction of the sinogramG made by the function fillSinogram.m

Remark on fillHilbert

I had to regularize the hilbert functionhH(s) =
1
πs

because the integral of the convolutiongH (see (7))
was unstable around zero. Recall that the Hilbert transformof a functiong : R → C in the frequency
domain is :

Ĥg(ν) = −isign(ν)ĝ(ν)

We defineHc the regularized Hilbert transform by :

Ĥcg(ν)
def
= −isign(ν)χ[−c,c](ν)ĝ(ν)

We can prove that :

Hcg(s) = hc ∗ g(s) (11)

hc(s) = h(s)[1− cos(2πsc)] =
2

πs
sin2(πsc) = 2sinc2(πsc)c2πs (12)

This new function is nowC∞(R).
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I chose a cut-off frequencyc :

c ≃ 200
Q

2 · RROI
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Figure 8: On the left a small cut-off (keep low frequencies),on the right greater cut-off (oscillations
frequencies greater). We can see this new function is definedat the origin.

4.3.2 fanbeam.m

I made the effort to produce a Matlab program which could be a teaching aid. Indeed this function
enables us to choose amode which correspond to a particular step in the tomography process. Besides,
it was a very practical way to debug the program.

• mode onebeam:

This mode enables us to display the image boundaries (blue rectangle), the FOV (here equal to the ROI),
the vertex path and one beam which cross the image. The red filled point is a vertex pointa(λi) and the
red beam correspond tog(λi, αj) whereαj is the angle between the black line and the beam. We can
also visualize the line integral discretisation in the referential of the image (figure 10). The object we
want to reconstruct is inside the FOV, so only green points contribute to the integral.
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Figure 9: A X-ray crossing the object inside the FOV (here equal to the ROI). The red filled point is
a vertex pointa(λi) and the red beam correspond tog(λi, αj) whereαj is the angle between the black
line and the beam.
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Figure 10: The discrete line integral seen in the image referential. Only green points (in the FOV)
contribute to the projection calculation.
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• mode rebinning :

In this mode we can play with the Hilbert equality by considering the illustration of rebinning, i.e the
calculation ofpH . Let us see how it works to evaluateph(k, l) = pH(n(φk), sl) :

1. First we look for the intersections of the line(n(φk), sl) (black line on figure 12) with the cir-
cle (radiusRtraj) what gives two pointsP1 = a(λ1) and P2 = a(λ2), outputs of the function
intersec_path.m. The variablesP1in andP2in precise if these points belong to the vertex path.
If it is the case the point appears on blue on the graph (else onyellow).

2. Then we determine the angleαt = (Pt, ~PtO, ~PtPkl) wherePkl = sln(φk) (black point),Pt = a(λt)
the point previously found andO the origin (magenta point). This is the role of the functionalphat.m.

3. We also determine the indicesi andj (resp. by the functionfindVertex.m andfindAngle.m)
such thatλi 6 λt 6 λi+1 (the two pointsa(λi) anda(λi+1) are in green on the figure) andαj 6 α 6

αj+1.

4. Theorically the Hilbert equality stipulates thatpH(n(φk), sl) = gH(λt, αt) but as we work with a
discretisation we have to carry out a bilinear interpolation (made by the functioninterpolBilGH.m)

gH(λt, αt) ≃ gH(λi, αj)(λi+1 − λt)(αj+1 − αt) + gH(λi+1, αj)(λt − λi)(αj+1 − αt)+
gH(λi, αj+1)(λi+1 − λt)(αt − αj) + gH(λi+1, αj+1)(λt − λi)(αt − αi)

GH

αi αi+1αt

• ••

λi

λi+1

λt

•

•
• •

• •

• •

Figure 11: Bilinear interpolation ofgH(λt, αt)
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Figure 12: 1. The intersections between the line(n(φk), sl) and the circle are determined (blue and
yellow points) ; 2. The angleαt between the black and blue line is determined ; 3. We search inarrays
lambda andangles the values such thatλt ∈ [λi, λi+1] andαt ∈ [αj, αj+1]
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Figure 13: 4. The four beamsgH(λi, αj), gH(λi+1, αj), gH(λi, αj+1) andgH(λi+1, αj+1) are plotted.

The previous part explains how the functioncalculate_ph.m proceeds, this is the way it fills the
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arrayph(k, l). The functioncalculate_php can from now fills thephp array :

p′H(n(φk), sl) ≃
pH(n(φk), sl+1)− pH(n(φk), sl−1)

sl+1 − sl−1

(13)

At the end of this second part, we realized this serie of operations :

G GH PH PHP
∗h rebinning d

ds

acquisition.m fanbeam.m

Figure 14: Illustration of the operations made in chain on the arrays before the reconstruction step.

4.3.3 reconstruction.m

Finally f(x) is computed according to the formula :

f(x) ≃
1

2M

M∑

k=1

p′H(n(φk), x · n(φk)) (14)

using linear interpolation between the two samples ofs nearest tox · n(φk).

If x ∈ ROI then it will reconstruct accurately.

5 Results and analysis

These results are obtained with the following parameters :

⋆ Rtraj = 500
⋆ RROI = 50
⋆ RROI = 50
⋆ NV ertex = 256
⋆ Nbeams = 512
⋆ γm = arcsin(RROI

Rtraj
) ≃ 6◦

⋆ Q = 128, M = 401.

The source is far enough from the object (Rtraj >> RROI) to imagine that the sinogram will look like
a sinogram in the parallel geometry since the beams will be almost parallels due to the distance. Indeed
we obtain a pretty good result :
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Figure 15: Sinogram of a part of the Shepp-Logan phantom in a fanbeam geometry almost equivalent
to a parallel geometry.

This sinogramG has the usual form. Applying the regularized Hilbert filter on this sinogram, we get
for GH an image close to the sinogram display but smooth, which seems logical.

Figure 16: Sinogram filtered by the Hilbert filter.

The rebinning enables getting from fanbeam geometry to parallel geometry, producing this image for
PH :
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Figure 17: Image corresponding to PH after rebinning. Two regions present a sign problem, that is half
fixed by taking the difference instead the mean.

The image seems to be good, but as you can notice, there is a problem in uniform grey region (all pixels
values are 0). I understood these regions as corresponding to line(n(φk), sl)) which intersect the vertex
path in two pointsa(λ1) anda(λ2). In my initial program I calculate the mean of each contribution
gH(λ1, α) andgH(λ2,−α), but it turns out thatgH(λ1, α) ≃ −gH(λ2, α). That’s why I rather take the
difference, it solves the problem just for one region, the other has an opposite grey level (image on the
right). I will try to fix that point before the end of the intership. In any case this inversion of contrast
isn’t really a problem because the next step calculate the derivative, so only variation is interesting.

Figure 18: Image corresponding to PH after rebinning.

The problem is just visible on a line, what means only one index k0 will give a bad value forp′H(n(φk0), x·
n(φk0)) in the sum ofM terms. The effect is negligible among theM = 401 values taken. Indeed we
finally obtain a good reconstruction :
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Figure 19: Image reconstructed (the square inscribed in theFOV circle)
.

6 Personal record

I enjoyed discovering a new sector in the field of informaticsand mathematics applied to the
healthcare (I already made an initiation to the research in laboratory on the theme of neurosciences). I
was introduced to a new area of maths, and above all I realizedonce again how difficult it is to get a
robust implementation from a theorical analysis (in a shortperiod of two months). Indeed many times I
grappled with numerical problems which don’t exist in theory. For instance some comparisons between
numbers (like45 > 45.000) appear false, divisions by zero, singular matrix, or instability problems
(as the problem of the convergence of the integralgH that I was compelled to regularized) and so on.
This kind of error is often difficult to identify, so I aimed todivide my program into many functions
that could be tested individually. Moreover, the differentmodes I set up were very useful in identifying
where the program failed by visualing the process on plot.

Besides I discovered the business world and all the problemsits implies : the economic dimen-
sion, we have to find funds before we can launch a project; the competition between companies and
the question of confidentiality : patents must be taken seriously. I didn’t realize all of that during my
university studies, but what I appreciated in company is to work within a team whose members come
from a variety of backgrounds. That point was very interesting, and I liked being plunged in the mix of
mathematics, informatics, robotics and medicine.

7 Conclusion

At that time, all the processes of reconstruction in two dimensions work in Matlab for a short scan tra-
jectory. The next step will be first to fix the related error, and to check that the reconstruction still works
for less than a short scan trajectory. Then I will bring some improvements to accelerate the execution
of the program, and eventually I would like to quantify my results (noise resistance, stability, and so on).

In the future we can imagine that this algorithm will be adapted in C++ (to gain more performance) and
integrated in 3D reconstruction.
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