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Based on these two following articles :

Robust Uncertainty Principle : Exact reconstruction from highly incomplete frequency
information (2004)

An introduction to compressive sampling (2008)




Pressure is on Digital Sensors

e Success of digital data acquisition is placing increasing pressure
on signal/image processing hardware and software to support

higher resolution / denser sampling

» ADCs, cameras, imaging systems, microarrays, ...
X
large numbers of sensors

» image data bases, camera arrays,
distributed wireless sensor networks, ...

X

increasing numbers of modalities
» acoustic, RF, visual, IR, UV

deluge of data

» how to acquire, store, fuse,
process efficiently?

Source : Ron De Vore & Richard Baraniuk



Digital Data Acquisition

e Foundation: Shannon sampling theorem

“if you sample densely enough
(at the Nyquist rate), you can
perfectly reconstruct the
original data”

time space

Source : Ron De Vore & Richard Baraniuk 4



Nyquist—-Shannon sampling theorem

s*(t) = Ts(t) - o7 (t)

AAAAAAAAAAAA




Sensing

Data gquz'sz'tz'on: fli] = f(i/N) = (f, d:) Tdo

v

Sensors

(8:): [
(Diracs)

fel? feER
Shannon interpolation: if Supp(f) C [-Nw, N
z sin(7t) 5 J —

where h(t) =

i

AN
3 B

Source : Gabriel Peyré o



Sensing by Sampling
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L — sample —

uniformly sample data at Nyquist rate (2x Four

e Long-established paradigm for digital data acqu

Ron De Vore & Richard Baraniuk

Source



Sensing by Sampling

e Long-established paradigm for digital data acquisition
— uniformly sample data at Nyquist rate (2x Fourier bandwidth)
- compress data (signal-dependent, nonlinear)

N> K

N K
compress

- n o %

A 4
\ 4

X —1 sample transmit/store

sparse
wavelet
transform

K

y

receive decompress

Source : Ron De Vore & Richard Baraniuk 8



Classical Image Representation: DCT

e Discrete Cosine Transform (DCT)
Basically a real-valued Fourier transform (sinusoids)

e Model: most of the energy is at low frequencies

e Basis for JPEG image compression standard

e DCT approximations: smooth regions great, edges blurred/ringing

Source : Justin Romberg & Michael Wakin 9



Modern Image Representation: 2D Wavelets

e Sparse structure: few large coeffs, many small coeffs
e Basis for JPEG2000 image compression standard
o Wavelet approximations: smooths regions great, edges much sharper

e Fundamentally better than DCT for images with edges

Source : Justin Romberg & Michael Wakin 10



1 megapixel image

Source : Justin Romberg & Michael Wakin

Wavelets and Images

wavelet coeffs (sorted)

00000

000000

00000

00000

000000

00000
2

zoom in (log,, sorted)

11




Wavelet Approximation

1 megapixel image 25K term approx

e Within 2 digits (in MSE) with = 2.5% of coeffs

e Original image = f, K-term approximation = fg

If — Fxllz = .01 -[[f]]2

Source : Justin Romberg & Michael Wakin 12

B-term approx error



Compressive Sensing

e Directly acquire “compressed” data

e Replace samples by more general "measurements”

K<MIKN

J —1 compressive sensing » transmit/store

Y

reconstruct

A 4

receive

Source : Ron De Vore & Richard Baraniuk 13



Compressive Sensing (CS)

e Recall Shannon/Nyquist theorem
- Shannon was a pessimist

- 2Xx oversampling Nyquist rate is a worst-case bound
for any bandlimited data

— sparsity/compressibility irrelevant

— Shannon sampling is a linear process while
compression is a nonlinear process

e Compressive sensing
- new sampling theory that /leverages compressibility
— based on new uncertainty principles

— randomness plays a key role

Source : Ron De Vore & Richard Baraniuk 14



Sensing

Data gquz'sz'tz'on: fli] = f(i/N) = (f, d:) Tdo

v

Sensors R
(07)

(Diracs)
fel? feR

Shannon interpolation: if Supp(f) C [-Nw, N

Ft)y =3 flilh(Nt ~ i)

where h(t) = ST

i

Source : Gabriel Peyré 15



Coded Acquisition

e Instead of pixels, take linear measurements
Y1 = <f7¢1>9 Y2 = <fa¢2>7 cec s YM = <fa¢M>

y=2f

e Equivalent to transform domain sampling,
{#..} = basis functions

e Example: big pixels

Ym —

Source : Justin Romberg & Michael Wakin 16



Coded Acquisition

e Instead of pixels, take linear measurements
Y = <f7¢1>9 Y2 = <f9¢2>7 ey YM = <f9¢M>

y=2f

e Equivalent to transform domain sampling,
{$.n} = basis functions

e Example: line integrals (tomography)

Source : Justin Romberg & Michael Wakin 17



Coded Acquisition

e Instead of pixels, take linear measurements
Y = <.f7¢1>7 Y2z = <f7¢2>7 cee s YM = <f7§bM>

y=2f

e Equivalent to transform domain sampling,
{¢.,} = basis functions

e Example: sinusoids (MRI)

Source : Justin Romberg & Michael Wakin 18



Random sensing

CS is about designing hardware: input signals f € L?(R?).

Physical hardware resolution limit: target resolution f € R¥.

v

]
€ mmmmm >

Source : Gabriel Peyré 19



Algebraic formulation
y1 = (f, 1), y2 = <f3¢2>7 ey YM — <f3¢M>

Let define the sensing matrix as the following orthobasis

O = (1 P2 ... Qbm)TGmen

The process of recovering f € R" from y = ®f € R™

is ill-posed in general when m < n

But one can recover the object if it has a sparse
representation in another basis functions ¥ which
IS orthogonal and incoherent with the basis & .

20



f € R™ can be extended in a given basis W = |19 - - - ¢y,]
f(t) =) awi(t)
i=1

in which a small number of coefficients x; =< f,1); > are nonzero elements

SO0T 5 00000 S0PV BT BB Y v

sparse T nearly sparse x

21



Incoherence

Coherence between the sensing basis ® and the representation basis W is

0. ) = Ve [ < bty >

w(®, ¥) € [1,/n] since V7, Z\ < b > 2 = ||w,|I* =1
k=1

or(t) = 6(t — k) (spikes basis) and v, (t) = n~1/2e~2™it/" (Fourier basis)

wm=P 1(P,T)=1 Maximal incoherence

» & = Noiselets, ¥ = Haar = u(®,¥) = /2
« & = Noiselets, ¥ = Daubechies D4, D8 = u(®,¥) =2.2,2.9
« ® = Random matrix, ¥ = fixed basis = E|u(P, V)| = \/2 logn

| v o 1id N(0,1), £1, exp(i2mwit) ...

22



Main results
Y =< f,popr >Vhke M & y=>f = ®Ux with = sparse

Recovery

The reconstruction f* is given by f* = Wx* where 2™ is solution of

min ||Z||g, subject to y = ®Vx
FER?

i
\

Théoréme 1

Fix f € R"™ and suppose that the coeflicient sequence x of f in the basis
U is S—sparse. Select m measurements in the ® domain uniformly at random.

Then if
m > C - p?(®,0)- S -log(n/d)

the solution of the convex optimization is exact with probability 1 — 9.

e — s

23




Motivations

-

Tomography projection: [ =FFT2(f)

H/.i | "9 c |

>
Image f

Fourier Slide Theorem : lﬁo(p)l=lf(PCOS(9)aPSiIl(e))

1D 2D Fourier
Partial measurements : {pek (t)}0<k<m

Equivalentto: @ f = {f[w]}wegz

Filtred backprojection
VS

(c) (d)

Figure 1: Example of a simple recovery problem. (a) The Logan-Shepp phantom test COHVGX mlﬂlmlzatIOﬂ

image. (b) Sampling "domain’ in the frequency plane; Fourier coefficients are sampled along

22 approximately radial lines. (c¢) Minimum energy reconstruction obtained by setting ) . N A

unobserved Fourier coefficients to zero. (d) Reconstruction obtained by minimizing the min ||9||BV SUbJeCt to g(Cd) = f(CL)) for all w < Q

total-variation, as in (1.1). The reconstruction is an exact replica of the image in (a).

24



Key points
N—-1
21k
Hypothesis f(t)e "wrt ) = % k=0,1,...,N —1

t=0

B Suppose we are only given f|Q sampled in some partial subset ) C Zxy

B Suppose f is supported on a small subset S C Zy : f = Z o Oy
tesS

They proved that f can be reconstructed from f|q if |S| < |Q[/2. (N prime)

In principle, we can recover f exactly by solving the optimization

(Po) min||glle,, Jlo = flo

Combinatorial problem for Q] ~ N/2 = 4N . 373N/4 qubsets to check !

Instead one can solved the convex problem

(P1) minlglle, = Y 9@, dlo= flo

teEZ N

(Pp) and (Py) are equivalent for an overwhelming percentage of the choices
for S and Q) with |S| < C - |Q|/log N
25



For almost every ()

They proved that f can be reconstructed from f|q if [S| < |Q|/2. (N prime)

for N prime, Fs_of := f|q for all f € £5(S) is injective when |S| < |9
hold for non-prime if S, {) are not subgroups of Zy
()¢ must not content a large interval (mostly the case when chosen randomly)

B There exist sets {2 and functions f for which the /;-minimization procedure
does not recover f correctly, even if |supp(f)| is much smaller than |€2|.

A

Dirac’s comb f f

e /N spikes spaced v/ N apart

e Invariant under Fourier transform (f = f)

o |S|+ |0 =2VN

time domain Fourier domain

Measurements : Q* all frequencies but the multiples of v/ N, namely [(2*|

A

f

o- = 0 == Reconstruction is identically zero
26




For almost every ()

They proved that f can be reconstructed from f|q if [S| < |Q|/2. (N prime)

for N prime, Fs_af := f|q for all f € £5(S) is injective when |S| < |9
hold for non-prime if S, {) are not subgroups of Zy
()¢ must not content a large interval (mostly the case when chosen randomly)

B There exist sets {2 and tunctions f for which the ¢;-minimization procedure
does not recover f correctly, even if |supp(f)| is much smaller than |€].

Box signals

e sample size N large
o [ = r where T = {t: —N-001 < ¢ < NO-O1
o O={k:N/3<k<2N/3}

® h a function whose Fourier transform A is a non-negative bump function on
the interval {k: —N/6 < k < N/6} which equals 1 when —N/12 < k < N/12

vanishes in 2

Fourier transform of |h(t)|?

~ |h(t)|? rapidly decreases away from ¢t =0 : |h(t)]? = O(N~') fort ¢ T

|h(0)|? > ¢ for some absolute constant ¢ > 0

27



Uncertainty Principles

e Heisenberg (1927)
Uncertainty principle for continuous-time signals

f f
= — —

1
gt0, > E

e Limits joint resolution in time and frequency

28



Uncertainty Principles

e Donoho and Stark (1989)
Discrete uncertainty principle for C

| L

supp f = T supp f = Q

oo oo 000000

|+ |2 > 2V N

e Implications: recovery from partial information, unique sparse
decompositions

e Generalization to pairs of bases B, Bs
[Donoho,Huo,Elad,Bruckstein,Gribonval,Nielsen]

29



Relation to the uncertainty principle

/ Classical arguments show that f is the unique minimizer of (Py) iff : \

S F® +h®> Y 1F@), Vh#0, hla =0

teZn teZyn
Put 7" = supp(f) and apply the triangle inequality

Y IF@O +Rr@)] =D 1f@) +h@)]+ Y k@) = D 1FE)] — [RE)] + D A @),
Zy T Te T Te

Hence, a sufficient condition to establish that f is our unique solution would be to show

S Ih@I < S Ih@B] VR #£0, ko =0.
T TC

or equivalently Y 1 |h(t)| < 3||h|ls,.- The connection with the uncertainty principle is now
explicit; f is the unique minimizer if it is impossible to ‘concentrate’ half of the #; norm
of a signal that is missing frequency components in {2 on a ’small’ set T'.

\_ /

30




Robust uncertainty principle

ﬁnderlying our analysis is a new notion of uncertainty principle which holds for a.lmtm
any pair (supp(f),supp(f)). With 7" = supp(f) and €2 = supp(f), the classical discrete
uncertainty principle [6] says that

IT| + |9 > 2VN. (1.11)

with equality obtained for signals such as the Dirac’s comb. As we mentioned above, such
extremal signals correspond to very special pairs (7°,€2). However, for most choices of T’
and (2, the analysis presented in this paper shows that it is impossible to find f such that
T = supp(f) and Q = supp(f) unless

IT| + 12| > (M) - (log N)~*/? - N, (1.12)

which is considerably stronger than (1.11). Here, the statement ’most pairs’ says again
wat the probability of selecting a random pair (T, Q) violating (1.12) is at most O(N—M).

31



Strategy for proving

(Pp) and (P) are equivalent for an overwhelming percentage of the choices

for S and Q with |S| < C - [Q2]/log N

Reformulation with duality theory

N-1
Linear program (P1) ,+ ™2 ;(9+(t) +9~(1), Falgt —g7) = fla

97,9720
N-1
Ligt, g 0 utu7) =) (g ) +9~ @) + M (fla—Falgt —9g7)) + u™g" + (u)"g”
t=0
Fa@@ -3) = flo
(u)'g" = 0 (FaA) = sen(f)t) teS
(W)'g =0 1= (FaN@E) —nu" = 0 teS°
oL * P R p— C
6§+(t) o I{§+(t)>0} — féA + #+ = 0 1+(fQA)(t) H = 0 te S
oL _
95, = Ifg-@>0y + FoA + p~ = 0.
Thus, to show that f* is unique and is equal to f, it suffices to find a trigonometric
polynomial P whose Fourier transform is supported in £2—in other words, which only uses —
frequencies in £2-—and which matches sgn(f) on supp(f), and has magnitude strictly less P(t) Sgn(f) (t) tes
than 1 elsewhere. | P(t)l < 1 t §é S

32



Construction of the polynom P

With |Q2| > |T|, and if F1_q is injective, we construct P as follows
P .= FoFr_a(Froa-Fra) ‘t*sgn(f), (3.4)

where Fq = Fz,.q is the Fourier transform followed by a restriction to
the set 2; the the embedding operator ¢ : £5(T) — ¢2(Zy) extends a
vector on T to a vector on Zy by placing zeros outside of T; and .* is the

dual restriction map *f = f|t

33



Equivalent representation using matrix

For a signal f € C", the discrete Fourier transform Ff = f : CN — CV is
defined as
N—1
flw):=> f(t)e >N w=0,1,...,N—1. (3.5)

=
The discrete Fourier transform can also be represented using matrix form:
f = Ff,
where F € CV*V and F(,p) = e 2ml-Dr-1)/N 1 <j p<N.

Assume we permute the rows/columns of F such that the first |T| columns
of F correspond to the set T, and the first |Q2| rows of F correspond to the
set (2. Note that F is not symmetric any more.

Also we partition F in the following form after permutation:

Fi1  Fi2
F= ,
[le F22]

where F11 = CIQIXITI, F12 = CIlelTCl, F21 = ClQC|X|T|, F22 = ClQC|x|TCI,
and T =Zn— T,0° =Zn — L.
34



Equivalent representation using matrix

@ The discrete Fourier transform can be represented as
[fln] _ [Fn F12] [flT]
lec F21 F22 fch

Froa = F1,Fq = [F11, F12].

@ [hus we have

@ The operators ¢+ and +* can also be represented in the matrix form

L [Ilon} e RITIXIZ = — [1 0] € RIIXITI

@ Then P can be represented as

P = [ }j F11(Ff1F11)_1 [I|T| O] sgn(f).

35



Equivalent representation using matrix

@ Note that f is supported on T, thus we have

sgn(f) = [Sg"(oﬂ T)]

@ Thus P can be simplified:

F N _
P = };] F11(F11F11) 1 [I|T| O] sgn(f)

/i) ]
sgn(f
FryFuFyFu)t BT
@ Clearly, we have
VP = "sgn(f) = sgn(f| 7).

36



Main ideas of the proof

@ Fixing f and its support T, we will prove Theorem 1.3 by establishing
that if the set {2 is chosen uniformly at random from all sets of size
N, > C,,'|T|log T, then we can prove

o Invertibility. The operator F1_,q is injective, i.e., the matrix F{;F;1 is
invertible, with probability 1 — O(N—M).
o Magnitude. The function P obeys |P(t)| < 1 for all t € T with
probability 1 — O(N—M).
@ Then we can apply Lemma 3.1, and obtain Theorem 1.3 directly.

e A difficulty is how to make use of the argument that €2 of certain size
is chosen uniformly at random.

@ In this paper, we use Bernoulli probability model for selecting the set
(2, and show how to convert this model to the uniform probability
model.

37



Bernoulli Model

@ A set Q' of Fourier coefficients is sampled using the Bernoulli model
with parameter 0 < 7 < 1 by first creating the sequence

(0 with prob. 1—17,
I, = < . (3.6)
1 with prob. 7.

\

e Note that the size of Q' is random, and E(?") = 7N.

@ We will show that the “Invertibility” and “Magnitude” hold with a
high probability for the Bernoulli model.

38



L1 reconstruction of a sparse image

e Take M = 100, 000 incoherent measurements y = ®f,

> e f, = wavelet approximation (perfectly sparse)

e Solve
min |||, subjectto PPa =1y

> ¥ = wavelet transform

original (25k wavelets) perfect recovery

Source : Justin Romberg & Michael Wakin 39



Geometry of Sparse Signal Sets

YN RV

1

P2

Linear Sparse, Nonlinear

K-plane Union of K-planes

Source : Justin Romberg & Michael Wakin 40



Geometry: Embedding in R

ox

K-planes

o O(K-plane) = K-plane in general
e M = 2K measurements
— necessary for injectivity
— sufficient for injectivity when ® Gaussian
— but not enough for efficient, robust recovery

e (PS - can distinguish most K-sparse x with as few as M=K+1)

Source : Justin Romberg & Michael Wakin 41



The Geometry of L, Recovery

X RN

A

measurements

X HNETEN
|
il
EN EEEEE BN EERe

N x 1
signal {LE/ . Y = CDLE/}
K null space of P

nonzero
entries translated to I

random orientation
dimension N-M

Source : Justin Romberg & Michael Wakin 49



L, Recovery Works

r = arg min ||z||o
y=>bo’

)

minimum L, solution correct

if
TM 22k {x' . y= P2’}

(w.p. 1 for Gaussian @) null space of P
translated to I

Source : Justin Romberg & Michael Wakin 43



Sparse Signal

§

-1

-2

(b)

l; Recovery

*Original
“Recovered

-1

-2

(c)

[AG2) (a) A sparse real valued signal and (b) its reconstruction
from 60 (complex valued) Fourier coefficients by ¢,
minimization. The reconstruction is exact. (¢) The minimum
energy reconstruction obtained by substituting the £, norm
with the £; norm; £, and £; give wildly different answers. The
£; solution does not provide a reasonable approximation to
the original signal.

Why L; Works

T = arg min ||z'[|1
y=>ba’

&)

Criterion for success:

Ensure with high probability that

a randomly oriented (N-M)-plane, /. _ /
anchored on a K-face of the L, {a: Ly =&z }

ball, will not intersect the ball. random orientation
dimension N-M

Want K small, (N-M) small
(i.e., M large)

Why L, Doesn’t Work

RN
. . , A%
r = arg min ||z'||2 - |
y:q).’lf’ X
least squares, {z' 1 y = P’}

minimum L, solution
is almost never sparse

44 Source : Justin Romberg & Michael Wakin



CS Signal Recovery

e Reconstruction/decoding: given vy = Px
T

(ill-posed inverse problem) find

o L, fast, wrong r = arg min ||z||2
y=>x

o L, correct, slow T = arg min ||z|o
y=>x

e L, co_rrect, eff|C|en_t 7 = arg min ||z|1
mild oversampling y=bx

[Candes, Romberg, Tao; Donoho] linear program

M = O(Klog(N/K)) < N

Source : Justin Romberg & Michael Wakin 45



Restricted Isometry Property (aka UUP)

[Candes, Romberg, Tao]

e Measurement matrix ® has Y
RIP of order K if !

b3

< (1494
e =t ox)

(1 —-4Kr) < “

EEE EEEEE BN EEl

for all K-sparse signals .

e Does not hold for K>M; may hold for smaller K.

e Implications: tractable, stable, robust recovery

Source : Justin Romberg & Michael Wakin 46



RIP as a "“Stable” Embedding

e RIP of order 2K implies: for all K-sparse z, and z,
|Pz1 — P25

(1 —d2k) < 5= < (14 d2k)
|z1 — x2||5
RN RM
1 —
L2 Pz
)
K-planes

(if 55 < 1 have injectivity; smaller 5, more stable)

Source : Justin Romberg & Michael Wakin 47



Implications of RIP

[Candes (+ et al.); see also Cohen et al., Vershynin et al.]

If 5, < 0.41, ensured:
1. Tractable recovery: All K-sparse x are perfectly

recovered via {;minimization.

2. Robust recovery: For any xe R\,

|z —zll¢, < Cllz — zk|le, and [z —zfl, < C

3. Stable recovery: Measure y = ®x + e, with
|lel|, < &, and recover

T = argmin||z’||1 s.t. [ly — P2'||]2 < e.

Then for any xe RN,

|z — zKlle, |
K12 - Cae

|z — ||, < Ca

Source : Justin Romberg & Michael Wakin 48



Verifying RIP:
How Many Measurements?

e Want RIP of order 2K (say) to hold for MxN @

— difficult to verify for a given @
- requires checking eigenvalues of each submatrix

e Prove random @ will work
— iid Gaussian entries
— iid Bernoulli entries (+/- 1)
— Iid subgaussian entries
— random Fourier ensemble
- random subset of incoherent dictionary

e In each case, M = O(K log N) suffices
- with very high probability, usually 1-O(ecN)
— slight variations on log term
— some proofs complicated, others simple (more soon)

Source : Justin Romberg & Michael Wakin 49



Optimality

[Candés; Donoho]

Gaussian ® has RIP order 2K (say) with M = O(K log(N/M))

Hence, for a given M, for x € wl, (i.e., [x[4y ~ k'1/P), 0 < p <1,
(or x € ly)

CK™Y2||lz — x|,
O K1/2-1/p

C(M/log(N/M))H/2=4/P

|z — [,

IAIATA

Up to a constant, these bounds are optimal: no other linear
mapping to RM followed by any decoding method could yield
lower reconstruction error over classes of compressible signals

Proof (geometric): Gelfand n-widths [Kashin; Gluskin, Garnaev]
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Applications : new sensing architectures

fo

PD

AD +—— 1Y

DMD+ALP
Board

RNG

f*,P/N =016 f*,P/N =0.02

Source : Gabriel Peyré 51



Thank you for listening !

52



