
Modelling the trajectory of a skydiver

Group 7

September 01, 2013

Philipp Müller
Faculty of Engineering Sciences, Tampere University of Technology,

P.O. Box 692, FI-33101 Tampere, Finland

Dario Paccagnan
DTU Compute, Technical University of Denmark,

Matematiktorvet Building 303 B, DK-2800 Kgs. Lyngby, Denmark

Kevin Polisano
Engineering School, Ensimag,

BP 72,38402 Saint Martin D’Heres, France

Katharina Rafetseder
Institut für Mathematik, Johannes Kepler Universität Linz,

Altenberger Straße 69, 4040 Linz, Austria

Miriam Ruiz Ferrández
Faculty of Mathematics, University of Santiago de Compostela,

Rúa Lope Gómez de Marzoa, Campus sur 15782, Santiago de Compostela, Spain

Tom Slenders
Faculty of Mathematics and Computer Science, Eindhoven University of

Technology,
Den Dolech 2, Postbus 513, 5600 MB Eindhoven, The Netherlands

Katherine Tant
“Mathematics and Statistics”, University of Strathclyde,

LT1021, Livingston Tower, 26 Richmond Street, Glasgow, G1 1XH , Scotland

Angelos Toytziaridis
Faculty of Engineering, University of Lund,

Box 117, SE-221 00 Lund, Sweden

Instructor: Kshitij Kulshreshtha
Institut für Mathematik, Universität Paderborn,

Warburger Straße 100, 33098 Paderborn, Germany

1

Abstract

Skydiving is the extreme sport of exiting an aircraft mid-flight
and free-falling, before releasing a parachute on the final approach to
Earth. If the parachute is not deployed in time, the diver risks suffer-
ing from severe, or even fatal, injuries. The need to manage this risk
has generated a market for Automatic Activation Devices (AADs),
which will automatically release a parachute when it is detected that
the diver is in danger. CYPRES is such a device created by Airtec.
This poject focusses on advancing the methodology behind CYPRES
in the hopes of improving its ability to detect when the diver breaches
a safety threshhold based on height and acceleration measurements.
An Extended Kalman Filter, fusing measured data with an ODE based
on the physics of free-fall, has resulted in a predictive model, approx-
imating the time left until a parachute must be deployed. With some
further development, this approach could feasibly further minimise
the risk associated with the sport.

2

1 Introduction

In recent years, the extreme sport of skydiving has become increasingly pop-
ular. The risk associated with the sport is high, with an estimation of over
100 fatalities occurring since 2011 [?]. The need to manage this danger has
generated a market for tools such as Automatic Activation Devices (AADs).
These AADs automatically deploy a reserve parachute when necessary, thus
reducing the number of fatal accidents caused by the diver failing to ‘pull’ or
the parachute failing to deploy.
One such device is the CYPRES (Cybernetic Parachute Release System) pro-
duced by Airtec. CYPRES determines the height above sea level by measur-
ing the barometric pressure1. If the diver’s velocity exceeds a predetermined
value at a preset altitude, it will automatically release a reserve parachute.
CYPRES is available in several models such as Expert, Tandem, Student
and Speed, all of which differ only in the preset parameters for velocity and
height, allowing the diver to choose the most suitable level for his needs and
experience.

Type of diver Critical height Critical velocity
Experts 225m 35 m

s

Students 300m 13 m
s

Tandem 580m 35 m
s

Speed 100-225m 43 m
s

Clearly the height estimation must be as precise as possible, but due to
the changing position and posture of the diver, the measured pressure is
very noisy and consequently, there exists a margin of error for the estimated
height.
In order to cope with this difficulty Airtec wants to improve CYPRES by
including measurements (taken every 0.25s) coming from an accelerometer
attached to the skydiver.

The objective of the project is to fuse the data coming from the accelerometer
with that from the barometric probe in order to enhance the precision of
CYPRES. A prediction for the future height is also desirable.

1Once the barometric pressure P is known, it is possible to compute the height z

above the sea level with the following relation P
P0

=
(

T0

T0+L0z

) gM
R∗L0 , where P0 and T0 are

the barometric pressure and the standard temperature at sea level, L0 is the standard
temperature laps rate, M the molar mass of dry air and R the universal gas constant.

3

Approach

The core tool developed in this project report is an extended Kalman filter
(EKF), which fuses the information from the sensors with the knowledge of
the mathematical model governed by the physics.
As is well known, the EKF allows one to enhance the precision with respect
to both the measurements and mathematical model. Consequently, the first
important step is to determine the model of the physical phenomenon we
want to study. Describing the dynamic from the take off of the aeroplane
to the diver’s point of exit is difficult, since aerodynamic forces play an
important role, and are irrelevant in regards to the operation of the AAD.
It was therefore decided appropriate to model the free-falling phase only,
i.e. the period of time between the jump from the plane and the parachute
opening. The EKF starts when the skydiver jumps, hence we needed to
automatically determine the specific instant when the jump occurred and
the initial conditions.

In section 2 we construct the mathematical model with particular attention
to the estimation of unknown parameters involved in the equations. Section
3 is devoted to automatic determination of the jumping point and the initial
conditions. The EKF and its implementation are then presented in section
4. In the last part we present the results we have obtained using real world
data and some conclusions.

2 Model of a free-fall skydiver

We want to model the dynamic of a free-falling object of mass m. In partic-
ular, we are interested in its vertical position z. For this purpose we project
Newton’s second law on the vertical axis and consider all the forces Fz acting
on that direction

m z̈ = Fz , (1)

where z̈ is the vertical acceleration.
Within the model, gravity and wind drag must be taken into account.

• The gravity force is given by G = −mg, where we can assume the
gravitational acceleration g = 9.80665m

s2
being constant as it changes

significantly only above an altitude of 100 kilometres.

• The drag force has a more complex structure, which can be expressed

4

compactly using the drag equation as

D =
1

2
ρ(z)ż2cDA ,

where ż is the vertical speed, cD the dimensionless drag coefficient and
A is the horizontal cross sectional area of the diver.
The mass density of air ρ(z) changes significantly with height according
to the well known equation

ρ(z) = ρ0

(
T0 + L0z

T0

)(− gM
R∗L0

)−1

.

In the previous formula T0 is the temperature at sea level, L0 = −0.0065 K
m

is the standard temperature lapse rate, M = 0.0289644 kg
mol

is the mo-
lar mass of air, R∗ = 8.31432 the universal gas constant, and ρ0 the
mass density at sea level. In later calculations, T0 and ρ0 will be set
T0 = 293K and ρ0 = 1.2041 kg

m3 .

The major difficulty comes from cD and A as they change during the
jump depending on the skydiver’s posture, which is unknown. We
therefore define the coefficient c∗(t) := cDA which is dependent on
time.
In the following, we will only consider the time average value of c∗(t),
which is clearly a constant. In the next section we are going to present
a non-linear estimation technique that allows us to determine the best
time average value c∗ at the present time based on all previous mea-
surements.

If we substitute the specific expressions for the gravity force and wind drag
in (1), we get the final form of the ODE

z̈ = −g +
1

2m
ρ(z)ż2 cDA︸︷︷︸

=:c∗(t)

, (2)

with ρ(z) = ρ0

(
T0+L0z

T0

)(− gM
R∗L0

)−1

.

Estimation of c∗

The purpose of this section is to introduce a non-linear fitting technique
that allows us to determine the best time average value c∗, given previous

5

measurements from the free-fall phase.
The first step is to rewrite the ODE as a system of first order equations

dz

dt
= v

dv

dt
= −g +

1

2m
ρ(z)v2c∗.

Given data points (ti, yi)
k
i=1 = (ti, zi)

k
i=1 up to timestep tk, we compute the

estimate of the parameter c∗ as the solution to the following minimization
problem



min
c∈R

φ =
1

2

m∑
i=1

‖ŷ(ti)− yi‖22 +
1

2
α‖c‖2∗︸ ︷︷ ︸

regularization

s.t.
dx

dt
(t) = f(t,x(t), c) x(t0) = x0

ŷ(t) = g(x(t), c)

cl ≤ c ≤ cu,

(3)

where in our case

x(t) =

[
z(t)
v(t)

]
, f(t, x(t), c) =

[
v(t)

−g + 1
2m

ρ(z)v(t)2c

]
, g(x(t), c) = z(t).

The idea for determining c∗ is to find the value of c that minimizes the
absolute difference between measured values, yi and analytical values, ŷ(ti).
The term α‖c‖2∗ in (3) is necessary to guarantee the well-posedness of the
general problem. However, since we are looking for a parameter c∗, which is
a time average and thus a constant over time, α can be chosen as zero. More
information about regularization methods can be found in [5].
To solve the problem we need to know the initial condition, i.e. the height
z(t0) and the velocity v(t0) at the jumping time. The identification of the
jumping instant and the estimation of the initial condition is the topic of the
next section.

3 Jumping time detection and initial condi-

tions

To continue with the development of the ODE model it is necessary to devise
an automatic technique to find the time at which the diver jumps from the

6

aircraft, so as to calculate the velocity for the initial conditions. The presence
of noise in the data (pressure, acceleration) provided by Airtec makes this
quite difficult.
The first attempt to extract this value involved looking at the z component
of the acceleration vector. Examining the unfiltered data (see Figure 1)
a large spike is observed after approximately 5000 time steps, i.e. after
approximately 1250 seconds. However, noise prevents us from automatically
choosing the jump point from this plot.

250 500 750 1000 1250 1500
Time (s)

Figure 1: Vertical component of the acceleration at every time step.

To accentuate the drop in acceleration at the jump point, differences between
neighbouring points were taken, allowing for analysis of the rate of change
in acceleration over time (see Figure 2). A median filter2 was then applied
to this data (Figure 3), and the jumping point was selected to correspond to
the maximum value in the smoothed derivative.
Of the six data sets provided, this approach was successful in five. The
uncertainty in the sixth case motivated a change in tactic.

2The filters we applied are discussed in subsection 3.1 and 3.2.

7

1000 2000 3000 4000 5000 6000
Time (s)

Figure 2: Derivative of vertical acceleration component.

250 500 750 1000 1250 1500
Time (s)

Figure 3: Filtered derivative of vertical acceleration component.

Instead of considering only the z component of the acceleration vector, it
was decided to examine the vector norm. Figure 4 depicts the differentiated
unfiltered and filtered acceleration vector norms. In this case the median
filter with a window of size 21 was applied. Note that as the filter uses a
symmetric window, it is necessary to know what values occur in 10 future
data points. This gives a delay of 10×0.25 s = 2.5 s in determining the jump
point. The delay is acceptable in relation to the total length of the free-fall,
which lasts approximately one minute. The final algorithm uses a threshold
(approximately 1/2 of the mean value of the dataset) to estimate the time

8

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

Time (∆t=0.25s)

A
cc

el
er

at
io

n
Measured data

0 1000 2000 3000 4000 5000 6000 7000
50

100

150

200

250

Time (∆t=0.25s)

A
cc

el
er

at
io

n

Median filtered data

Figure 4: The median filter can be used to determine the jump point and
parachute opening point. The acceleration is the norm of the three axis.

at which this occurs. The first point below this threshold is taken to be the
jump point. It must be noted that the median filter window size utilized in
the algorithm was never optimized and there is potential to further minimize
the current delay of 2.5s.

Beside the initial height the initial velocity is needed. The idea is to calculate
the initial velocity by means of a central difference quotient, i.e.

v(t) =
h(t+∆t)− h(t−∆t)

2∆t
,

where ∆t = 0.25.
A moving average filter was used to smooth the height measurements. How-
ever, by considering the green filtered height in figure 5, it can be observed
that the numerical velocity (calculated via the central difference quotient)
changes considerably around the jump point. Hence, we add a delay (15
samples ≈ 3.75 sec.) to the determined jump point and calculate the initial
velocity at this time. In the following computations we use this delayed jump
point to calculate the initial conditions for our ODE.

9

1090 1095 1100 1105 1110 1115 1120 1125 1130
Time (s)

Height
Filtered height

delayed jump point

determined jump point

Figure 5: Measured height compared with filtered height.

3.1 Median Filter

As mentioned above, the median filter was applied to the acceleration data.
For each time step ti a window of size n is taken, centered on that point.
The values lying within the window are sorted into ascending order and the
median is taken. This value is then assigned to ti and the window is shifted
by one time step to the right where the process is reiterated. Median filters
are typically used because of their stability with respect to outliers.

t̂ = median(sort(ti−n/2...ti...ti+n/2)) (4)

3.2 Moving average filter

The moving average (MA) filter averages different subsets of the data to give
a smoothed approximation of the measured signal. In its simplest form, t̂i is
the unweighted mean of n previous data points

t̂i =
ti + ti−1 + ...+ ti−n+1

n
(5)

10

This process is carried out for every point in the data set, excluding the first
(n−1) points which use only the previous data available. More advanced MA
filters are available to improve the approximation however for the purposes
of this project, the simple MA filter was sufficient.

4 Extended Kalman filter

So far, we have constructed a model (ODE) of a free-falling skydiver and
devised a technique to find the jumping time at which we calculate the initial
condition for the differential equation.
We are ready to introduce the core tool: the extended Kalman Filter (see
e.g. [3, p. 195 ff.], [4, p. 273 ff.]). The well-known Kalman filter (see e.g. [6, p.
206 ff.]) is an algorithm that fuses together measured data coming from a
physical phenomenon and the (linear) model governing it. The output is a
more precise estimate than what each of these two can yield alone. The EKF
is the non-linear extension of the Kalman filter.
In this specific case we want to fuse together the measured pressure and
acceleration data with the physical model we have constructed (ODE).

We begin by writing our ODE as a system of first order ODEs:

d2z

dt2
=

D

m
− g ⇐⇒

{
ż = v z(t0) = z0
v̇ = 1

2m
%v2cDA− g v(t0) = v0.

(6)

We let X =

(
z
v

)
, thus the equation can be written as

Ẋ = F(X) where F

(
z
v

)
=

(
v

1
2m

%v2cDA− g

)
.

Here v corresponds to the ‘speed’ of the skydiver which is assumed to be
mainly oriented towards Earth.
The first step is to transform the system of differential equations previously
presented into a discrete dynamic and to add noise as follows

xk =

[
zk
vk

]
= f(xk−1) +wk−1

yk =

[
zk
v̇k

]
= c(xk) + uk,

11

where f(xk) is called the state function, and c(xk) observation function.
Both functions f and c can be non-linear but must be differentiable to en-
able us to use the EKF. Furthermore, uk and wk are the state transition and
observation noises, which are both assumed to be zero mean multivariate
Gaussian noises with covariance matrices Qk and Rk respectively. In our
case we choose Qk and Rk to be constant. To find an accurate Qk a large
database of samples should be analysed. However, due to lack of prior data,

we were forced to make some assumptions. We chose Qk =

[
52 0
0 0.22

]
where

5 and 0.2 relate to estimations of the standard deviation of the height and
velocity respectively.
The standard deviation of the height measurements σ = 15 m was provided

by Airtec, allowing us to make an informed estimate for Rk =

[
152 0
0 0.52

]
.

• The state function f is found by discretizing the model (6). We choose
to do this by applying a fourth order Runge-Kutta method since it
is much more stable and more accurate than, for example, the Euler
method. The fourth order Runge-Kutta for a step size h > 0 is defined
as:

xk+1 = xk +
h

6
(k1 + 2k2 + 2k3 + k4) = f(xk)

with 
k1 = F(xk)
k2 = F

(
xk +

h
2
k1
)

k3 = F
(
xk +

h
2
k2
)

k4 = F(xk + hk3)

• Each observation consists of the couple (height, acceleration), thus the
observation function is given by

c(z, v) =

(
z
a

)
=

(
z
v̇

)
=

(
z

1
2m

%v2cDA− g

)
.

The main idea of the EKF is to linearize state and measurement functions
around an estimate of the current mean value and its covariance, wherefore
it uses the Jacobian matrix of f and c at a point xk, which we denote as F k

and Ck respectively. By definition

Ck =

(
∂f1
∂z

(zk, vk)
∂f1
∂v

(zk, vk)
∂f2
∂z

(zk, vk)
∂f2
∂v

(zk, vk)

)
=

(
1 0

1
2m

ρ′(zk)v
2
kc

? 1
m
ρ(zk)vkc

?

)
.

12

Determining the Jacobian matrix of f by hand is hard because f is a com-
position of F four times with itself, so we would need to apply the chain
rule. Fortunately, there exists a tool to evaluate the derivative of a function
specified by a computer program, called “algorithmic differentiation”. For
this purpose, we used the Matlab program “ADiMat”.

The extended Kalman filter is defined by the following set of recursion [1],
which can be divided into two parts: predicting the current state using in-
formation from the previous state, and updating this state estimate using
measurements/observations of the current time step.

Prediction

Predicted state estimate x̂k|k−1 = f(x̂k−1|k−1)
Predicted covariance estimate P k|k−1 = F k−1P k−1|k−1F

T
k−1 +Qk−1

Update

Innovation or measurement residual ỹk = yk − c(x̂k|k−1)
Innovation (or residual) covariance Sk = CkP k|k−1C

T
k +Rk

Near-optimal Kalman gain K = P k|k−1C
T
kS

−1
k

Updated state estimate x̂k|k = x̂k|k−1 +Kkỹk

Updated estimate covariance P k|k = (I −KkCk)P k|k−1 .

The state transition and observation matrices are defined by

F k−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1

Ck =
∂c

∂x

∣∣∣∣
x̂k|k−1

To initialize the recursion, the initial state x0 is set to z0, the altitude of the
skydiver when he is jumping, and v0 their velocity at that point as described
in the previous sections.
The algorithm gives at each step an improved estimate called x̂k|k, but also a
future prediction of how the state would evolve. The l steps ahead prediction
is obtained by applying x̂k|k−1 = f(x̂k−1|k−1) l times. The future prediction
is valuable as it allows us to compute the time left until the parachute must
open automatically (i.e. until the height drops under the safety level).

13

5 Results and Conclusion

We first present the comparison for the height estimation in Figure 6. The
ODE’s analytical solution, the measured data, and the EKF’s estimates are
close to each other. In more detail, Figure 7 shows that the EKF prediction
is affected - as designed - by the incoming measurements, while this is not
true for the solution of the ODE.

10 20 30 40 50 60 70 80
T ime [s]

Solution to ODE
Sampled height
Kalman prediction

Figure 6: The change of height over total period of time.

20 22 24 26 28 30 32
T ime [s]

Solution to ODE
Sampled height
Kalman prediction

Figure 7: Comparison of sampled height, ODE solution and Kalman predic-
tion

14

10 20 30 40 50 60 70 80
T ime [s]

Sampled scceleration
Kalman prediction
Solution to ODE

Figure 8: Comparison of sampled acceleration, solution to ODE and Kalman
prediction

Figure 8 shows the predicted acceleration compared to the sampled acceler-
ation and the solution of the ODE model. Although the values do not fit
exactly one can say that the three curves have the same trend.

The vertical velocity is shown in Figure 9, where the red line represents the
values coming from the Kalman prediction, while the blue one is the solution
of the ODE. Even though they do not overlap exactly, they are still close to
each other and begin to converge as time progresses. This is due to the way
we have implemented our algorithm. The EKF is based on the theoretical
model (6) whose solution depends on the parameter c∗. To enhance the
accuracy we update c∗ every 5 samples in our EKF algorithm. As we get
more observations, the updated c∗ gives a better estimation of the model and
the Kalman filter works more effectively.3

The most valuable result for Airtec is represented in Figure 10, which depicts
the predicted time until automatic parachute release. Note that it does not
reach zero as the parachute wass opened before automatic deployment was

3We have taken into account the computational load required for this extra loop and
notice that each single c∗ evaluation costs only 0.25s.

15

0 10 20 30 40 50 60 70 80
−65

−60

−55

−50

−45

−40

−35

T ime [s]

V
e
lo

c
it
y

[m
/
s
]

Kalman prediction
Solution to ODE

Figure 9: Velocity given as solution to ODE and Kalman prediction.

necessary.

A general idea for improvement would be to have two sensors, for example
one on the front and a second on the back of the diver, and then take the
mean value of the measurements. This could potentially reduce the noise
resulting from acting wind and make the predictions more accurate.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

T ime [s]

T
im

e
le
ft

u
n
ti
l
a
u
to

-r
e
le
a
se

[s
]

Figure 10: Predicted time left until parachute release given the samples tk.

16

References

[1]

[2] Broken stick regression.

[3] Brian D. O. Anderson and John B. Moore. Optimal Filtering. Prentice-
Hall information and system sciences. Dover Publications, Inc., 2005.

[4] Andrew H. Jazwinski. Stochastic Processes and Filtering Theory, vol-
ume 64 of Mathematics in Science and Engineering. Academic Press,
1970.

[5] Barbara Kaltenbacher, Andreas Neubauer, and Otmar Scherzer. Iterative
regularization methods for nonlinear ill-posed problems, volume 6. Walter
de Gruyter, 2008.

[6] Peter S Maybeck. Stochastic Models, Estimation, and Control Volume 1.
Mathematics in Science and Engineering. Academic Press, 1979.

A Linear regression of velocity

Aside from the methods described above we also tried to apply a linear
regression model to fit our data. It appeared that this method was less
effective, therefore we chose not to use it. Nonetheless we add it here for
possible further research.

Linear regression is a way to determine a linear function through some data
points. Applying this to our model does not work, since it’s obviously not
linear. Therefore we chose to apply piecewise linear regression which does
more or less the same thing, but only considers the data between some set
breakpoints B. It finds a linear function between consecutive breakpoints
and creates an overall continuous function.

For the linear regression we simply use this algorithm [2] and others exist as
well. The main problem is finding the break points. Doing this manually
gives very good results as can be seen in Figure 11. But we have to automate
this in the real system. We tried a few approaches for this. Each of these
started by applying a median filter.

17

0 200 400 600 800 1000 1200 1400
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time (s)

ac
ce

le
ra

tio
n

(g
)

data points
Linear regression with manual breakpoints

Figure 11: The linear regression found by manually picking breakpoints.

A.1 Median threshold filter

As seen in section 3.1 we can use two threshold values to find the jump point
and parachute opening point. This idea can be extended by taking a lower
threshold and taking all values that exceed the threshold. We are trying to
estimate the acceleration function, this means that we can’t look solely at the
value of each point. We have to take a derivative or even a second derivative.
Both seem to give results as can be seen in Figure 12.

The amount of points that result from this method vary a lot and therefore
we also try to find the threshold automatically by setting the amount of
points p we want and then automatically taking the p absolute highest values.
Unfortunately most points that were founded were very close to each other
if a low p was chosen. If a high p was chosen several interesting points are
found, but it how good these points are differs a lot for different data sets.
Therefore this method did not work as good as the previous method.

A.2 Postprocessing

After determining some interesting point by setting a threshold we find sev-
eral points that are too close to each other. We apply to filters on them to
eliminate the points that are too close together.

18

The first filter is a middle point filter. This filter tries to determine if several
interesting points are close together and removes the middle points, but lets
both left and right point exist. A certain window w must be chosen. The
algorithm is shown in Algorithm 1. The reason for this algorithm is that a
lot of points that have strange behavior are close together. Most of the time
you only want the two exterior points for the piecewise linear regression as
the others were probably created by noise.

Algorithm 1 Middle point filter(w,D)

Require: w ∈ N, D a set of breakpoints
1: found = false
2: for i ∈ {2, . . . , |D|} do
3: if found=false then
4: if D(i)−D(i− 1) ≤ w then
5: found:=true
6: end if
7: R(i) := D(i)
8: else
9: if D(i)−D(i− 1) > w then
10: R(i) := D(i)
11: found:=false
12: end if
13: end if
14: end for
15: R(1) := D(1), R(length(R) + 1) := D(|D|)

We also use a second postprocessing algorithm called the close points filter
to find two points that are close together. More than two points that are
close together will be removed by the middle point filter, but if you have
two points that are close together, the close points filter will resolve this. We
choose a window w. Any two points that are at most w steps away from each
other will be merged in a new point. This point will be the average of the
two points. We apply the middle point filter first and the close points filter
thereafter. This means that as long as we choose the window of the middle
point filter as large as the window for the close point filter, there will never
be more than two points close together.

A.3 Applying the filters

The resulting steps are as follows:

19

0 200 400 600 800 1000 1200 1400
−2

−1.5

−1

−0.5

0

0.5

time (t)

ac
ce

le
ra

tio
n

(g
)

data points
Linear regression using first derivative

0 200 400 600 800 1000 1200 1400
−2

−1.5

−1

−0.5

0

0.5

time (s)

ac
ce

le
ra

tio
n

(g
)

data points
Linear regression using second derivative

Figure 12: The linear regression found by using the first derivative (left) and
second derivative (right) to find breakpoints.

1. Apply median filter

2. Find points using a threshold on either the first or second derivative

3. Apply postprocessing algorithms

Both the first and second derivative can give good results as can be seen in
Figure 12. The parameters have been chosen by trial and error and should
probably be determined by using several data sets.

We also applied these algorithms (with different parameters) to the the jump
only. This could result in some insight in the movement of the skydiver as
his drag will be different depending on his position. But it appears that it
is very hard to model this properly, see Figure 13. We also tried to apply
splines to the same breakpoints, but this result was worse. It looks like the
linear regression works relatively well for the general acceleration, but not
good for the jump only. Since the jump is the most important part, we want
to use a more precise method.

We can check if the acceleration and height data are correlated. They should
be correlated by the velocity for example. We can check this by approximat-
ing it by using the height or the acceleration as can be seen in Figure 14. Also
the linear regression was used to find a better approximation of the velocity
derived from the acceleration. Note that a constant cannot be derived and
therefore the functions are not perfectly aligned, but the shape is the same.
The velocity derived from the height has a larger error, but behaves more or
less the same.

20

0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

time (s)

ac
ce

le
ra

tio
n

(g
)

data points
Linear regression using first derivative

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

ac
ce

le
ra

tio
n

(g
)

data points
Linear regression using second derivative

Figure 13: The linear regression found by using the first derivative (left) and
second derivative (right) to find breakpoints.

0 10 20 30 40 50 60 70
−20

−18

−16

−14

−12

−10

−8

time (s)

ve
lo

ci
ty

 (
m

/s
)

velocity approximated by linear regression on acceleration
velocity approximated by acceleration
velocity approximated by height

Figure 14: Velocity approximated by using the height, acceleration and linear
regression of acceleration for the jump

21

